Екатеринбург
(343) 271 76 55
ул. Маневровая, 43

0 товар(ов)
0 руб.
Оформить заказ
 

Главная / Расчет трансформатора ч.3

Расчет трансформатора ч.3

4.6. ОПРЕДЕЛЕНИЕ МИНИМАЛЬНО ДОПУСТИМЫХ ИЗОЛЯЦИОННЫХ РАССТОЯНИЙ В СУХИХ ТРАНСФОРМАТОРАХ

Главная изоляция в сухих трансформаторах осущест­вляется обычно при помощи таких же изоляционных конст­руктивных деталей, как и в масляных трансформаторах: изоляционных цилиндров, угловых шайб, междуфазных перегородок и т. д. При конструировании сухих трансфор­маторов наряду с обеспечением электрической прочности

Таблица 4.15. Изоляция обмоток ВН сухих трансформаторов, мм

Uисп для ВН, кв ВН от

ярма lo2

Между ВН и НН Между ВН и ВН
a12 δ12 lП2 a22 δ22
3 15 10 Картон 2х0,5мм 10 -
10 20 15 2,5 10 10 2
16 45 22 4 25 25 3
24 80 40 5 40 45 3

следует обращать особое внимание на получение достаточ­ных воздушных охладительных каналов между обмотками и такое расположение изоляционных деталей (угловых шайб и т. д.), при котором обеспечивается наилучший до­ступ воздуха к обмоткам. Основные изоляционные расстоя­ния главной изоляции (рис.

4.17) могут быть выбраны по табл. 4.15 и 4.16.

Рис 4.17. Главная изоляция обмоток сухих трансформаторов

Междувитковая изоляция сухих трансформаторов обыч­но достаточно надежно обес­печивается нормальной изоля­цией провода. В качестве меж­дукатушечной изоляции могут служить горизонтальные воз­душные каналы, размеры ко­торых определяются по усло­виям отвода тепла по табл. 9.2.

Междуслойная изоляция в многослойных цилиндричес­ких обмотках сухих трансфор­маторов  может выполняться

из стеклолакоткани марки ЛСБ-120/130 на основе битумно-масляного алкидного лака с толщиной полотна 0,15 мм (ГОСТ 10156—78). При рабочем напряжении двух слоев обмотки 1000—2000 В следует проложить три слоя по 0,15 мм; при напряжении 2001—3000 В — четыре слоя по 0,15 мм и при напряжении 3001—3500 В — пять слоев по 0,15 мм. Выступ междуслойной изоляции за торцы обмот­ки 20 мм. Структура изоляции на торцах выполнена по рис. 5.21.

Таблица 4.16. Изоляция обмоток НН сухих трансформаторов, мм

Uисп для НН, кВ НН от ярма l01 НН от стержня
a01 δ01 lЦ1
3 15 10 Картон 2х0,5
10 30 14 2,5 15
16 55 27 5 30
16 90 40 6 40

Примечания: 1. См. примчание к табл. 4.15

2. Для винтовой обмотки при Uисп для НН 3кВ ставить цилиндр δ01=2,5-5мм и принимать a01 не менее 20мм.

Сухие трансформаторы устанавливаются внутри поме­щений, подводка линии высшего напряжения к ним осуще­ствляется кабелем. Поэтому изоляция сухих трансформа­торов испытывает коммутационные перенапряжения, но практически свободна от воздействия атмосферных перена­пряжений.

Минимальные расстояния между токоведущими и зазем­ленными частями в сухом трансформаторе (отвод ВН — отвод НН; отвод ВН — заземленная шпилька; отвод ВН— обмотка ВН; отвод ВН — стенка кожуха и т. д.) можно принять следующими: при чисто воздушном промежутке при рабочем напряжении 6 кВ 50 мм, при 10 кВ 80 мм; при наличии барьера 2 мм или покрытия той же толщины на одном из электродов — соответственно 40 и 60 мм. Допу­стимое расстояние по поверхности твердого диэлектрика (электроизоляционный картон, гетинакс и др., но не дере­во) при рабочем напряжении 6 и 10 кВ — около 100 мм.

Глава пятая

ВЫБОР КОНСТРУКЦИИ ОБМОТОК ТРАНСФОРМАТОРОВ

5.1. ОБЩИЕ ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ОБМОТКАМ ТРАНСФОРМАТОРА

Общие требования, предъявляемые к обмоткам транс­форматора, можно подразделить на эксплуатационные и производственные.

Основными эксплуатационными требованиями являют­ся надежность, электрическая и механическая прочность и нагревостойкость как обмоток, так и других частей и всего трансформатора в целом. Изоляция обмоток и других ча­стей трансформатора должна выдерживать без поврежде­ний коммутационные и атмосферные перенапряжения, ко­торые могут возникнуть в сети, где трансформатор будет работать. Механическая прочность обмоток должна допус­кать упругие деформации, но гарантировать их от остаточ­ных деформаций и повреждений при токах короткого за­мыкания, многократно превышающих номинальный рабо­чий ток трансформатора.

Нагрев обмоток и других частей от потерь, возникаю­щих в трансформаторе при номинальном режиме работы, допустимых перегрузках и коротких замыканиях ограниченной длительности, не должен приводить изоляцию обмоток и других частей, а также масло трансфор­матора к тепловому износу или разрушению в сроки более короткие, чем обычный срок службы трансфор­матора — 25 лет.

Общие эксплуатационные требования, предъявляемые к трансформаторам и их обмоткам, регламентированы соот­ветствующими общесоюзными стандартами на силовые трансформаторы общего назначения, различные трансфор­маторы специального назначения, электрические испытания изоляции трансформаторов и т. д. Практически электриче­ская прочность изоляции обмоток достигается рациональ­ной ее конструкцией, правильным выбором изоляционных промежутков и изоляционных материалов и прогрессивной технологией обработки изоляции при высокой общей куль­туре производства. Требование механической прочности об­мотки удовлетворяется путем рациональной организации поля рассеяния, а также правильного выбора типа конст­рукции обмотки и расположения ее витков и катушек с та­ким расчетом, чтобы возникающие в этой обмотке механи­ческие силы были по возможности меньшими, а механиче­ская стойкость возможно большей.

Для достижения необходимой нагревостойкости следует обеспечить свободную теплоотдачу в окружающую среду всего тепла, выделяющегося в обмотках при допустимых для данного класса нагревостойкости изоляции превышени­ях температуры обмоток над температурой окружающей среды, т. е. обеспечить достаточно большую поверхность соприкосновения обмотки с охлаждающей средой — мас­лом или воздухом.

Основные производственные требования к трансформа­тору заключаются прежде всего в технологичности его кон­струкции, позволяющей изготовить трансформатор с ми­нимальными затратами труда и материалов.

Требования, предъявляемые к трансформатору в це­лом, в полной мере относятся к обмоткам. Задачей проек­тировщика является разумное сочетание интересов эксплу­атации и производства. Эта задача решается в значитель­ной мере при выборе того или иного типа обмотки. Поэто­му на выбор типа обмотки, наиболее полно отвечающей требованиям эксплуатации и в то же время простой и де­шевой в производстве, следует обращать особое внимание. Практические указания по этому вопросу даются в харак­теристиках различных типов обмоток.

В процессе расчета обмотки после выбора ее типа сле­дует добиваться наибольшей компактности в ее размеще­нии, распределении витков и катушек, для того чтобы получить наилучшее заполнение окна трансфор­матора.

Одновременно следует стремиться к получению доста­точно развитой поверхности охлаждения обмотки и доста­точного числа и размеров масляных (воздушных у сухого трансформатора) охлаждающих каналов в обмотках при обеспечении наименьшего гидро- и аэродинамического со­противления для движения в них охлаждающей среды, что дает возможность уменьшить внутренний перепад темпера­туры в обмотках и как следствие этого несколько уменьшить охлаждаемую поверхность бака трансфор­матора.

Потери энергии, выделяющейся в обмотках в виде теп­ла, должны быть полностью отведены в среду, охлаждаю­щую трансформатор. На пути движения тепла в масляном трансформаторе существенное значение имеют два пере­пада температуры — между поверхностью обмотки и ох­лаждающим ее маслом вп.м и между поверхностью стенки бака и охлаждающим ее воздухом вб.в. Перепад во.м пря­мо зависит от плотности теплового потока на поверхности, т. е. от потерь в обмотке Р, отнесенных к единице ее по­верхности

ПОХЛ <= Р/ПОХЛ, Вт/м2.

Перепад температуры δо.м обычно ограничивают значе­нием 23—25 °С путем ограничения плотности теплового по­тока φ, что при верхнем пределе превышения средней тем­пературы обмотки над воздухом, ограниченном по ГОСТ значением ±65°С, позволяет получить среднее превышение температуры стенки бака над воздухом не менее вб,в~35-38°С. Увеличение перепада δО,М сверх 25 °С приведет к необходимости рассчитывать охлаждаемую поверхность бака на меньший перепад температуры δб,в, т. е. к суще­ственному увеличению размеров и массы материалов си­стемы охлаждения трансформатора.

В сухих трансформаторах с естественным воздушным охлаждением имеются два перепада температуры — внутри обмотки В0 и на ее поверхности, охлаждаемой воздухом Вов. В сумме эти два перепада не должны быть больше значения, установленного ГОСТ 11677-85 для каждого класса нагревостойкости изоляции обмоток от 60 °С при классе А до 125 °С при классе Н.

5.2 КОНСТРУКТИВНЫЕ ДЕТАЛИ ОБМОТОК И ИХ ИЗОЛЯЦИЯ

 Основным элементом всех обмоток трансформаторов является виток (см. § 2.1). В зависимости от тока нагруз­ки виток может быть выполнен одним проводом круглого сечения, или проводом прямоугольного сечения, или, при достаточно больших токах, группой параллельных прово­дов круглого или, чаще, прямоугольного сечения. На рис. 5.1, а—е представлены различные варианты поперечных сечений одного витка обмотки при различных токах на­грузки. Эти варианты не являются исчерпывающими.

Рис. 5.1. Формы сечения витка обмотки при различном числе парал­лельных проводов

Ряд витков, намотанных на цилиндрической поверхно­сти, называется слоем. В некоторых типах обмоток слой может состоять из нескольких десятков или сотен витков, в других — из нескольких витковх или даже из одного витка.

Отдельные витки обмотки группируются в катушки. Ка­тушкой называется группа последовательно соединенных витков обмотки, конструктивно объединенная и отделенная от других таких же групп или от других обмоток трансфор­матора. Обмотка стержня может состоять из одной, двух или многих катушек. Катушка может состоять из ряда сло­ев или только из одного слоя витков. Число витков в ка­тушке может быть различным — как целым, так и дроб­ным, однако должно быть больше единицы. На рис. 5.2 представлены поперечные сечения нескольких различных типов катушек.

Для обеспечения надлежащей электрической прочности обмотки между ее витками, катушками, а также между обмоткой и другими частями трансформатора должны быть выдержаны определенные изоляционные расстояния, зави­сящие от рабочего напряжения и гарантирующие обмотку от пробоя изоляции как при рабочем напряжении, так и при возможных перенапряжениях. В этих промежутках могут быть установлены изоляционные конструкции или детали из твердого диэлектрика либо промежутки могут быть заполнены только твердым диэлектриком — кабель­ной бумагой, электроизоляционным картоном и т. д. или только изолирующей средой — маслом, воздухом и т. д.

Рис 5.2. Различные типы катушек:

а - катушка из шестнадцати витков; б – катушка из шести витков; в – катушка из семи витков; г – катушка из шести витков (четыре параллельных провода)

Для нормального охлаждения между обмоткой и другими частями трансформатора, между катушками, в некоторых конструкциях и между витками делают масляные или воз­душные охлаждающие каналы. В одних случаях охлаж­дающие каналы обеспечивают одновременно и надежную изоляцию обмотки, в других — для усиления изоляции применяются специальные изоляционные детали — прос­тые и угловые шайбы, изоляционные цилиндры, перегород­ки и т. д.

Во всех типах обмоток принято различать осевое и ра­диальное направления. Осевым считается направление, па­раллельное оси стержня трансформатора, на котором ус­танавливается данная обмотка. Радиальным считается на­правление любого радиуса окружности обмотки. В силовых трансформаторах с вертикальным расположением стерж­ней осевое направление совпадает с вертикальным, а ради­альное — с горизонтальным. В этом смысле принято гово­рить также об осевых и радиальных — вертикальных и горизонтальных — каналах обмоток.

По направлению намотки подобно резьбе винта разли­чают обмотки правые и левые (рис. 5.3). Однослойные об­мотки, имеющие в одном слое более одного витка (рис. 5.3, а), остаются левыми или правыми в зависимости от того, как они намотаны, но независимо от того, какой ко­нец — верхний или нижний -считается входным. В об­мотках, состоящих из нескольких таких слоев, с перехода ми из слоя в слой (рис. 5.3, б) направление намотки слоев будет чередоваться. Если первый (внутренний) слой левый, то все другие нечетные слои также будут левыми, а все четные — правыми. Для таких обмоток за начало при опре­делении направления намотки обычно принимается начало первого (внутреннего) слоя и направление намотки всей обмотки считается по направлению намотки этого слоя.

Рис 5.3. обмотки левой и правой намоток:

а – цилиндрическая однослойная; б – цилиндрическая многослойная; в – одинарные катушки катушечной обмотки; г – двойные катушки катушечной обмотки.

Отдельные катушки, имеющие форму плоской спирали, будут условно считаться правыми или левыми в зависимо­сти от того, какой конец — внутренний или наружный — считать входным, а также от того, с какой стороны на них смотреть. Нетрудно убедиться, что такая катушка «левой» намотки, изображенная на рис. 5.3, в, станет «правой», ес­ли ее повернуть к наблюдателю другой стороной. Если по технологическим соображениям обмотка составляется из таких отдельно наматываемых одинаковых катушек, то одного указания «правая» или «левая» обмотка недоста­точно. В этом случае во избежание ошибок указания по направлению обмотки лучше всего давать в виде эскиза. Обычно такие катушки применяются парами (двойная ка­тушка). При этом входными и выходными являются наруж­ные концы, а переход из катушки в катушку производится внутри катушек (рис. 5.3, г) и направление намотки явля­ется определенным и независимым от точки наблюдения. Обмотка, составленная из любого числа последовательно соединенных двойных катушек одинаковой намотки, будет иметь то же направление намотки, что и отдельные двой­ные катушки. Это положение остается справедливым для непрерывных катушечных обмоток, где каждые две сосед­ние катушки могут рассматриваться как одна двойная ка­тушка, а также для многослойных цилиндрических кату­шечных обмоток, где входным обычно считают наружный слой катушки.

Правильный выбор направления намотки имеет сущест­венное значение для получения заданной группы соедине­ния обмоток, а в однофазных трансформаторах — также для правильного соединения частей обмоток, расположен­ных на разных стержнях. Большинство обмоток трансфор­маторов обычно выполняется левой намоткой, более удоб­ной для обмотчика, работающего в основном правой рукой.

Обмотки масляных и сухих трансформаторов изготов­ляются из медных и алюминиевых обмоточных проводов, а также из медной и алюминиевой ленты или фольги. Мед­ные и алюминиевые провода могут иметь эмалевую, хлоп­чатобумажную или бумажную изоляцию класса нагревостойкости А, а провода, предназначенные для обмоток су­хих трансформаторов, могут также иметь изоляцию более высоких классов нагревостойкости из стекловолокна, кремнийорганического лака и т. д. Собственная изоляция про­вода обычно обеспечивает достаточную электрическую прочность изоляции между соседними витками.

Таблица 5.1 Номинальные значения сечения и изоляция круглого медного алюминиевого обмоточного провода марок ПБ и АПБ с толщиной изоляции на две стороны 2 δ=0,30 (0,40 мм)

Диаметр, мм Сечение,мм2 Увеличение массы, % Диаметр, мм Сечение, мм2 Увеличение массы, % Диаметр, мм Сечение, мм2 Увеличение массы, %
Марка ПБ - медь 2,00 3,14 3,0 4,00 12,55 1,5
2,12 3,53 3,0 4,10 13,2 1,5
1,18 1,094 6,0 2,24 3,94 3,0 4,25 14,2 1,5
1,25 1,23 5,5 2,36 4,375 2,5 4,50

4,75

15,9

17,7

1.5

1,5

Марка ПБ – медь

Марка АПБ – алюминий

2,50 4,91 2,5 5,00 19,63 1,5
2,65 5,515 2,5 5,20 21,22 1,5
2,80 6,16 2,5      
1,32 1,37 5,0 3,00 7,07 2,5 Марка АПБ - алюминий
1,40 1,51 5,0      
1,50 1,77 4,5 3,15 7,795 2,0
1,60 2,015 4,0 3,35 8,81 2,0 5,30 22,06 1,5
1,70 2,27 4,0       6,00 28,26 1,5
1,80 2,545 3,5 3,55 9,895 2,0 8,00 50,24 1,0
1,90 2,805 3,5 3,75 11,05 1,5      

Примечания: 1. провод марок ПБ и АПБ всех диаметров выпускается с изоляцией на две стороны толщиной 2δ=0,3 (0,40); 0,72 (0,82); 0,96 (1,06) и 1,20 (1,35) мм; провод диаметром от 2, 24мм и выше - также с изоляцией 1,68 (1,83) и 1,92 (2,07), а провод диаметром от 3,75мм и выше – также с изоляцией 2,88 (3,08); 4,08 (4,33) и 5,76 (6,11)мм.

2. Без скобок указана номинальная толщина изоляции. Размеры катушек считать по толщине изоляции, указанной в скобках.

3. Увеличение массы провода за счет изоляции дано для медного провода. Для алюминиевого провода марки АПБ данные таблицы по увеличению массы умножить на 3,3

4. Увеличение массы провода марок ПБ и АПБ с усиленной изоляцией принимать по табл 5.4 с учетом прим.3 к табл 5.1

5. Провод марок ПСД и ПСДК выпускается в пределах диаметров от 1,18 до 5,0 мм и провод марок АПСД и АПСДК – от 1,32 до 5,0 мм.

6. Толщина изоляции провода марок ПСД, ПСДК, АПСД и АПСДК при диаметрах до 2,12мм 2δ=0,29мм (в расчете принимать 0,3мм) при диаметрах от 2,24 до 5,0мм. 2δ=0,35-0,38мм (в расчете принимать 0,40мм)

7. Для провода марок ПСД и ПСДК данные таблицы по увеличению массы умножить на 1,75 для диаметров от 1,18 до 2,12 мм и на 2,1 для диаметров от 2,24 мм и выше. Для алюминиевого провода марок АПСД и АПСДК учитывать прим.3.

Таблица 5.2 Номинальные размеры и сечения медного и алюминиевого обмоточного провода марок ПБ и АПБ (размеры а и б - в мм, сечение – в мм2)

Медный провод марки ПБ – все размеры таблицы, за исключением проводов с размером b 17 и 18мм

Алюминиевый провод марки АПБ – все размеры таблицы вправо вверх от жирной черты.

a

b

1,40 1,50 1,60 1,70 1,80 1,90 2,00 2,12 2,24 2,36 2,50 2,65 2,80 3,00 3,15 3,35 3,55 3,75 4,00 4,25 4,50 4,75 5,00 5,30 5,60 a/b
3,75 5,04 - 5,79 - 6,39 - 7,14 - 8,04 - 8,83 - - - - - - - - - - - - - - 3,75
4,00 5,39 5.79 6,19 6,44 6,84 7,24 7,64 8,12 8,60 8,89 9,45 10,1 10,7 - - - - - - - - - - - - 4,00
4,23 5,74 - 6,59 - 7,29 - 8,14 - 9,16 - 10,1 - 11,4 - - - - - - - - - - - - 4,25
4,50 6,09 6,54 6,99 7,29 7,74 8,19 8,64 9,18 9,72 10,1 10,7 11,4 12,1 13,0 13,6 - - - - - - - - - - 4,50
4,75 6,44 - 7,39 - 8,19 - 9,14 - 10,3 - 11,3 - 12.8 - 14,4 - - - - - - - - - - 4,75
5,00 6,79 7,29 7,79 8,14 8,64 9,14 9,64 10,2 10,8 11,3 12,0 12,7 13,5 11,5 15,2 16,2 17,2 - - - - - - - - 5,00
5,30 7,21 - 8,27 - 9,18 - 10,2 - 11,5 - 12,7 - 14,3 - 16,2 - 18,3 - - - - - - - - 5,30
5,60 7,63 8,19 8,75 9,16 9,72 10,3 10,8 11,5 12,2 12,7 13,5 14,3 15,1 16,3 17,1 18,2 19,3 20,1 21,5 - - - - - - 5,60
6,00 8,19 - 9,39 - 10,4 - 11,6 - 13,1 - 14,5 - 16,3 - 18,4 - 20,8 - 23,1 - - - - - - 6,00
6,30 8,61 9,24 9,87 10,4 11,0 11,6 12,2 13,0 13,8 14,3 15,2 16,2 17,1 18,4 19,3 20,6 21,8 22,8 24,3 35,9 27,5 - - - - 6,30
6,70 9,17 - 10,5 - 11,7 - 13,0 - 14,7 - 16,2 - 18,2 - 20,6 - 23,2 - 25,9 - 29,3 - - - - 6,70
7,10 9,73 10,4 11,2 11,7 12,4 13,1 13,8 14,7 15,5 16,2 17,2 18,3 19,3 20,8 21,8 23,2 24,7 25,8 27,5 29,3 31,1 32,9 34,6 - - 7,10
7,50 10,3 - 11,8 - 13,1 - 14,6 - 16,4 - 18,2 - 20,5 - 23,1 - 26,1 - 29,1 - 32,9 - 36,6 - - 7,50
8,00 11,0 11,8 12,6 13,2 14,0 14,8 15,6 16,6 17,6 18,3 19,5 20,7 21,9 23,5 24,7 26,3 27,9 29,1 31,1 33,1 35,1 37,1 39,2 41,5 43,9 8,00
8,50 11,7 - 13,4 - 14,9 - 16,6 - 18,7 - 20,7 - 23,3 - 26,2 - 29,6 - 33,1 - 37,4 - 41,6 - 46,7 8,50
9,00 12,4 13,3 14,2 14,9 15,8 16,7 17,6 18,7 19,8 20,7 22,0 23,3 24,7 26,5 27,8 29,6 31,4 32,9 35,1 37,4 39,6 41,9 44,1 46,8 49,5 9,00
9,50 13,1 - 15,0 - 16,7 - 18,6 - 20,9 - 23,2 - 26,1 - 29,4 - 33,2 - 37,1 - 41,9 - 46,6 - 52,1 9,50
10,00 13,8 14,8 15,8 16,6 17,6 18,6 19,6 20,8 22,0 23,1 24,5 26,0 27,5 29,5 31,0 33,0 35,0 36,6 39,1 41,6 44,1 46,6 49,1 52,1 55,1 10,00
10,60 14,6 - 16,8 - 18,7 - 20,8 - 23,4 - 26,0 - 29,1 - 32,8   37,1 - 41,5 - 46,8 - 52,1 - 58,5 10,60
                                                     
11,20 15,5 16,6 17,7 18,7 19,8 20,9 22,0 23,4 24,7 23,9 27,5 29,1 30,8 33,1 34,7 37,0 39,2 41,4 43,9 46,7 49,5 52,3 55,1 58,5 61,9 11,20
11,80 - - 18,7 - 20,9 - 23,2 - 26,1 - 29,0 - 32,5 - 36,6 - 41,3 - 46,3 - 52,2 - 58,1 - 65,2 11,80
12,50 - 18,5 19,8 20,9 22,1 23,4 24,6 26,1 27,6 29,0 30,7 32,6 34,5 37,0 38,8 41,3 43,8 46,0 49,1 52,3 55,4 58,5 61,6 65,4 69,1 12,50
                                                     
13,29 - - - - 23,4 - 26,0 - 29,2 - 32,5 - 36,4 - 41,0 - 46,3 - 51,9 - 58,5 - 65,1 - 73,1 13,20
14,00 - - - - 24,8 26,2 27,6 29,3 31,0 32,5 34,5 36,6 38,7 41,5 43,6 45,4 49,2 52,0 55,1 58,6 62,1 65,6 69,1 73,3 77,5 14,00
                                                     
15,00 - - - - - - 29,6 - 33,2 - 37,0 - 41,5 - 43,7 - 52,7 - 59,1 - 66,6 - 74,1 - 83,1 15,00
                                                     
16,00 - - - - - - 31,6 33,6 35,5 37,2 39,5 41,9 44,3 47,5 49,9 53,1 56,3 59,1 63,1 67,1 71,1 75,1 79,1 83,9 88,7 16,00
                                                     
17,00 - - - - - - - - - - - - 47,2 - 53,2 - 59,4 - 67,1 - 75,6 - 84,1 - 94,3 17,00
                                                     
18,00 - - - - - - - - - - - - - 53,1 55,8 59,4 63,0 66,6 71,1 75,6 80,1 84,6 89,1 94,5 99,9 18,00

Медный и алюминиевый обмоточный провод марок ПБ и АПБ, изолированный лентами кабельной бумаги класса нагревостойкости А (105°С), выпускается в соответствии с ГОСТ 16512-80. Медный провод круглого сечения марки ПБ имеет диаметры проволоки от 1,18 до 5,20 мм с номи­нальной толщиной изоляции на две стороны от 0,30 до 5,76 мм при площади поперечного сечения от 1,094 до 21,22 мм2. Сортамент медного круглого провода приведен в табл. 5.1,

Алюминиевый провод круглого сечения марки АПБ с проволокой диаметрами от 1,32 до 8,0 мм и площадью се­чения от 1,37 до 50,24 мм2 выпускается с той же толщиной изоляции, что и медный провод (табл. 5.1).

Медный провод прямоугольного сечения марки ПБ используемый в силовых трансформаторах, имеет размеры поперечного сечения проволоки — меньший от 1,4 до 5,60 и больший от 3,75 до 16,0 мм при площади сечения от 5,04 до 83,1 мм2 и толщине изоляции от 0,45 до 1,92 мм. В тран­сформаторах классов напряжения от 220 кВ и выше при­меняется также медный провод марки ПБУ, изолирован­ный лентами кабельной высоковольтной уплотненной бу­маги с номинальной толщиной изоляции на две стороны от 1,35 до 4,40 мм. Размеры поперечного сечения проволоки в проводах ПБУ — меньший от 1,80 до 5,60 и больший от 6,70 до 16,0 мм. Сортамент медного прямоугольного провода приведен в табл. 5.2.

Алюминиевый провод прямоугольного сечения марки АПБ имеет размеры поперечного сечения проволоки — меньший от 1,80 до 5,60 мм и больший от 3,75 до 18,0 мм при площади поперечного сечения от 6,39 до 99,9 мм2 и номинальной толщине изоляции на две стороны такой же, как и у медного провода (табл. 5.2).

В сухих трансформаторах может применяться провод тех же марок, что и в масляных. Однако при необходимо­сти получения пожаробезопасной установки, а также при расчете обмоток на работу при повышенной температуре обычно применяют провода других марок с изоляцией по­вышенной нагревостойкости по ГОСТ 7019-80. К этим мар­кам относятся: медный провод марки ПСД с изоляцией из стеклянных нитей, наложенных двумя слоями, с подклей­кой и пропиткой нагревостойким лаком или компаундом класса нагревостойкости F (155 °С) и марки ПСДК с та­кой же стеклянной изоляцией, но с подклейкой и пропиткой кремнийорганическим лаком класса нагревостойкости  Н (180 °С). Эти провода выпускаются как круглого попереч­ного сечения в сортаменте по табл. 5.1, так и прямоуголь­ного сечения в сортаменте табл. 5.3 с номинальной толщи­ной изоляции на две стороны от 0,27 до 0,48 мм.

Алюминиевый провод марок АПСД и АПСДК с круг­лым и прямоугольным поперечным сечением выпускается с такой же изоляцией, как и медный, в пределах сортамен­та алюминиевого провода по табл. 5.1 и 5.3.

Медные и алюминиевые провода имеют различную це­ну. Так, если среднюю цену 1 кг медного провода прямо­угольного сечения марки ПБ принять за 100 %, то цена 1 кг алюминиевого провода марки АПБ с такой же изоля­цией составит в среднем 85, медного провода марки ПСД— 110 и алюминиевого провода марки АПСД—150 %.

Электрическая прочность изоляции обмоточного прово­да, являющейся в большинстве обмоток трансформаторов витковой изоляцией, в значительной мере определяет на­дежность продольной изоляции обмоток. Для обеспечения достаточной прочности изоляции провода существенное значение имеет отделка поверхности проволоки, из кото­рой изготовлен провод, — отсутствие на ней неровностей и заусенцев, а также равномерное наложение лент кабельной бумаги. Плотное наложение бумажной изоляции провода гарантирует получение реальных размеров обмоток, близ­ких к расчетным. В расчетные формулы при расчете тран­сформатора обычно входит масса металла провода обмот­ки без изоляции, но количество провода при заказе и стоимость провода должны рассчитываться с учетом изоляции.

 

Таблица 5.3 Номинальные размеры и сечение прямоугольного медного обмоточного пр овода марок ПСД и ПСДК (предпочтительные размеры) (размеры а и б – в мм, сечения - мм2)

ba 1,40 1,60 1,80 2,00 2,24 2,50 2,80 3,15 3,55 4,00 4,50 5,00 5,60 a/b
4,00 5,39 6,19 6,84 7,64 8,60 9,45 10,7 - - - - - - 4,00
4,50 6,09 6,99 7,74 8,64 9,72 10,7 12,1 13,6 - - - - - 4,50
5,00 6,79 7,79 8,64 9,64 10,80 12,0 13,5 15,2 17,2 - - - - 5,00
5,60 7,63 8,75 9,72 10,80 12,20 13,5 15,1 17,1 19,3 21,5 - - - 5,60
6,30 8,61 9,87 10,40 12,20 13,80 15,2 17,1 19,3 21,8 24,3 27,5 - - 6,30
7,10 9,73 11,20 12,40 13,80 15,50 17,2 19,3 21,8 24,7 27,5 31.1 34,6 - 7,10
8,00 11,00 12,60 14,00 15,60 17,60 19,5 21,9 24,7 27,9 31,1 35,1 39,2 43,9 8,00
9,00 12,40 14,20 15,80 17,60 19,80 22,0 24,7 27,8 31,4 35,1 39,6 44,1 - 9,00
10,00 13,80 15,80 16,60 19,60 22,00 24,5 27.5 31,0 35,0 39,1 44,1 49,1 - 10,00
11,20 - - - - 24,70 27,5 30,8 34,7 39,2 43,9 49,5 55,1 - 11,20
12,50 - - - - 27,60 - - - - - - - - 12,50

Таблица 5.4. Ориентировочное увеличение в процентах массы медного провода марки ПБ и алюминиевого марки АПБ (см. прим. 1) за счет изоляции

Диаметр провода, мм При толщине изоляции 2δ, мм
0,72 1,29 1,92 4,08 5,76
1,18 18 35 - - -
1,40 14 27 - - -
1,60 12 23 - - -
1,80 10 19 - - -
2,00 9 17 - - -
2,12 8,5 16 - - -
2,50 7,5 12,5 22 - -
3,00 6 10 18 - -
3,55 5 9 14 - -
4,00 4,5 8 12 34 54
4,50 4 7 11 28 46
5,20 4 6 10 24 38

Примечания: 1. Для алюминиевого провода марки АПБ данные таблицы умножить на 3,3

2. Для промежуточных значений диаметра провода и толщины изоляции можно пользоваться линейной интерполяцией.

Таблица 5.5. Ориентировочное увеличение массы прямоугольного медного провода в процентах за счет изоляции для марки ПБ и алюминиевого марки АПБ (см. прим. 3) при номинальной толщине изоляции на две стороны 2δ = 0,45 мм

b,мм a,мм 1,40 – 1,80 1,90 – 2,65 2,80 – 3,75 4,00 – 7,00
3,75 – 7,50 3,5 3 2,5 2,0
8,0 – 18,0 2,5 2 2,0 1,5

Примечания: 1. При другой толщине изоляции данные из таблицы умножать при 2δ=0,96мм на 2,5; при 2δ=1,92мм на 5,0

2. Для провода марок ПСД и GCLR данные из таблицы умножать при 2δ=0,45мм на 1,7; при 2δ=0,50мм на 2,0

3. Для алюминиевого провода данные, полученные из таблицы или с учетом прим 1 и 2 умнодат на Vм/γа=3,3

провода должны рассчитываться с учетом изоляции. Для определения массы изолированного провода обычно увеличивают массу металла обмотки в соответст­вии с данным табл. 5.1, 5.4 и 5.5. Это увеличение массы зависит от толщины изоляции провода, материала изоляции и плотности металла обмотки.

Рис. 5.4 Транспонированный провод:

а-поперечное сечение провода (1-параллельные проводники с эмалевой изоляцией; 2- прокладка из кабельной бумаги; 3-общая изоляция из кабельной бумаги); б – пример схемы транспозиции семи проводников.

В современных трансформаторах больших мощностей (от 160 000 до 630 000 кВ*А) номинальный ток, да­же

в обмотках высшего напряжения ПО и 220 кВ, достигает 1000—3000 А и сечение витка таких обмоток, а тем

более обмоток низшего напряжения этих и трансформаторов меньших мощностей составляется из сечений многих параллельных мед­ных проводов с одинаковыми размерами и площадью поперечного се­чения. Поскольку изоляция между параллельными проводами одного витка требуется минимальная, а изоляция между соседними витками может быть обеспечена общей изоляцией всех проводов витка, возник­ла идея создания комбинированного провода, состоящего из нескольких параллельных медных проводников, имеющих тонкую эмалевую изоля­цию на каждом проводе и общую изоляцию из кабельной бумаги на всех параллельных проводах (рис. 5.4).

Для выравнивания полных сопротивлений параллельных проводни­ков и равномерного распределения тока между ними эти проводники неоднократно транспонируются по длине провода, т. е. меняются места­ми, например по схеме, показанной на рис. 5.4, б для семи проводников. Расстояние между двумя транспозициями (на рис. 5.4, б между двумя соседними расположениями проводников) по длине провода составляет для проводов различного сечения от 40 до 250 мм. Провода такого ти­па называются транспонированными.

Провода, заказ на которые не требует предварительного согласова ния с поставщиком, имеют следующие данные.

Таблица 5.6. Число элементарных проводников в транспонированных проводах

Меньшая сторона сечения а, мм Большая сторона сечения проводника без изоляции, b
3,75 4,50 4,75 5,00 5,30 5,60 6,00 6,30 6,70 7,10 7,50 8,00 8,50
2,00 - 11-21 11-23 11-23 11-25 11-27 11-29 11-29 11-31 11-33 11-33 - -
2,24 23 11-19 11-19 11-21 11-23 11-23 11-25 11-27 11-29 11-31 11-31 11-35 -
2,50 - - 9-19 9-21 9-19 9-21 9-23 9-23 9-25 9-29 9-29 9-31 9-33
2,80 - - - 9-17 9-17 9-19 9-21 9-21 9-23 9-23 9-25 9-27 9-29
3,15 - - - - - 7-15 7-17 7-19 7-19 7-21 7-23 - -

Число элементарных проводников в таком проводе должно быть нечетным и составляет обычно от 7 до 31 проводника. Провод медный прямоугольного сечения эмалированный высокопрочный марки ПЭМП. Размеры проводников — меньшая сторона от 2,00 до 3,15 мм; большая сторона от 3,75 до 8,00 мм. Между двумя рядами элементарных проводников прокладыва­ется лента кабельной бумаги толщиной 0,24 мм (2x0,12 мм). Общая изоляция провода марки ПТБ состоит из кабельной обычной или много­слойной бумаги и марки  ПТБУ из кабельной высоковольтной бумаги.

Число элементарных проводников с одинаковыми размерами и сечением в транспонированном проводе показано в табл. 5.6. Общее се­чение провода может быть получено путем суммирования сечений эле­ментарных проводников, взятых из табл. 5.2.

Удвоенная номинальная толщина общей изоляции провода может быть равной для провода марки ПТБ 2δ = 0,72(0,82); 0,96(1,06); 1,36 (1,51) и 1,92(2,07); для провода марки ПТБУ 2δ = 2,00(2,10); 2,48 (2,63); 2,96(3,11) и 3,60(3,80). При этом в скобках указана макси­мальная удвоенная толщина изоляции 2δт<maх.

Размеры А и В, мм, провода можно ориентировочно определить по формулам

А = 2b + 2δЭМ + δпрокл + 2δmax + δтехн (5.1)

где b — размер неизолированного проводника по рис. 5.4, а, мм; 2δэм — удвоенная толщина эмалевой изоляции проводника (2δэм = 0,2 мм); δпрокл — толщина прокладки (δпрокл = 0,24 мм); 2δmax— максимальная удвоенная толщина изоляции провода, мм; δтехн — возможное увеличе­ние размера по технологическим причинам. Можно принять для провода марки ПТБ δТехн=1,7 мм при размере провода а = 2,00-2,44 мм и 2,00 мм при размере а=2,50-3,15 мм. Для провода марки ПТБУ δтепл=1,7 мм при размере а=2,00-2,50 мм; 2,05 мм при размере а = 2,80 мм и 2,20 мм при размере а=3,15 мм;

  (5.2)

где а — размер неизолированного проводника по рис. 5.4, а, мм; n— число проводников в проводе.

Применение транспонированных проводов позволяет уменьшить объем и массу металла обмоток, упростить процесс намотки обмоток и уменьшить добавочные потери в обмотках.

В трансформаторах мощностью от 25 до 1000 кВ-А в качестве обмоточного материала для обмоток низшего напряжения при напряжениях до 690 В находит при­менение неизолированная алюминиевая лента по ГОСТ 13726-78. В качестве изоляции между витками служит по­лоса кабельной бумаги, вматываемой при намотке обмот­ки. В силовых трансформаторах реально может быть ис­пользована отожженная лента толщиной от 0,25 до 3,0 мм и шириной от 40 до 1000 мм. Предельные отклонения по толщине ленты от —20 до —5 %. В стандарте не установ­лены требования к удельному электрическому сопротивле­нию ленты, и этот параметр должен оговариваться при за­казе ленты.

В качестве проводникового материала для обмоток выс­шего напряжения силовых трансформаторов не исключено применение неизолированной алюминиевой фольги, изго­тавливаемой по ГОСТ 618—73. Поскольку эта фольга не предусмотрена как обмоточный материал для трансформа­торов, к ней не предъявляется требование определенного удельного электрического сопротивления. Поэтому некото­рые партии фольги с повышенным удельным сопротивлени­ем не могут применяться для изготовления обмоток. Также может оказаться необходимой отбраковка ленты, прокатан­ной с предельным отклонением от номинала до —15 %.

Одним из важнейших требований, предъявляемых к об­моточному проводу, является требование определенного удельного электрического сопротивления. Для всех круг­лых и прямоугольных медных проводов, включенных в табл. 5.1—5.3, согласно стандартам это сопротивление при 20 °С для отрезка проволоки длиной 1 м с сечением 1 мм2 должно быть не более 0,01724 Ом. Для алюминиевого пря­моугольного провода по табл. 5.2 и для круглого провода диаметром 1,80 мм и более по табл. 5.1 это сопротивление должно быть не более 0,0280 Ом, а для круглого диаметром от 1,35 до 1,70 мм — не более 0,0283 Ом.

В сравнительно редких случаях, например во входных катушках обмоток на ПО—500 кВ, может применяться до­бавочная изоляция витков путем обмотки их лентой из ка­бельной бумаги или лакоткани.

Между витками, состоящими из нескольких параллель­ных проводов, в обмотках некоторых типов могут быть сде­ланы радиальные (горизонтальные) каналы, основное на­значение которых состоит в том, чтобы обеспечить свобод­ный доступ масла или воздуха для надлежащего охлаж­дения всех параллельных проводов витка. Эти каналы обеспечивают также надежную, с большим запасом изоля­цию между витками.

В обмотках, состоящих из нескольких слоев круглого или прямоугольного провода, собственная изоляция виткон может оказаться недостаточной, и возникает необходи­мость введения добавочной изоляции между слоями, тем большей, чем больше суммарное рабочее (а следовательно, и испытательное) напряжение двух соседних слоев. Междуслойная изоляция может осуществляться прокладкой меж­ду слоями витков обмотки полос кабельной или телефонной бумаги, электроизоляционного картона или оставлением между слоями осевого масляного или воздушного канала, обеспечивающего как достаточную изоляцию, так и сво­бодный доступ к обмотке охлаждающего масла, или возду­ха, или другого теплоносителя. Различные виды междуслойной изоляции показаны на рис. 5.5.

При разделении обмотки на катушки возникает необхо­димость в надлежащей междукатушечной изоляции. Эта изоляция для катушек, расположенных в осевом направле­нии обмотки, как это видно из рис. 5.6, б—г, требуется то у наружного, то у внутреннего края катушки. Обычно изо­ляция между катушками выполняется в виде радиальных или осевых каналов, служащих для лучшего охлаждения обмотки.

В трансформаторах мощностью на один стержень до ПО кВА, в которых вопрос охлаждения обмотки еще не играет существенной роли, оказывается возможным вообще не делать радиальных междукатушечных каналов. В обмотках трансформаторов от 1000 до 6300 кВА с потеря­ми короткого замыкания по ГОСТ 11920-85 часто бывает возможно заменить шайбами половину масляных каналов. Такая замена вследствие малой толщины шайб (1—2 мм) по сравнению с масляными каналами (4—6 мм) позволяет

Рис. 5.5. Междуслойная изоляция

а – кабельная бумага; б – кабельная или телефонная бумага; в и г – картон электроизоляционный; г – масляный канал.

Рис. 5.6. Различные виды междукатушечной изоляции:

а – осевой канал; б – радиальный канал; в – шайбы; г – радиальный канал и шайбы.

получить некоторую экономию места по высоте (осевому размеру) обмотки (рис. 5.6, в).

Наружный диаметр междукатушечных шайб принима­ется обычно больше наружного диаметра катушки, для то­го чтобы удлинить путь возможного разряда по поверхно­сти между катушками. Сделать такой же выступ шайбы внутрь обмотки не представляется возможным ввиду того, что при отсутствии внутреннего осевого канала обмотка на­матывается непосредственно на цилиндр, а при наличии канала выступ шайбы будет закрывать канал и тем самым сводить к нулю его охлаждающее действие.

Изоляция между обмотками, а также обмоток от маг­нитной системы при рабочем напряжении не выше 35 кВ может быть осуществлена путем применения изоляционных цилиндров (рис. 5.7, а). Высота (осевой размер) цилиндра в этом случае делается больше высоты обмотки, чем удли­няется возможный путь разряда по поверхности между об­мотками. В трансформаторах с рабочим напряжением ПО

Рис. 5.7 Изоляция между обмотками и обмоток от магнитной системы:

а – изоляция при помощи жестких цилиндров; б – комбинация цилиндров и угловых шайб; в – отбортованные цилиндры из кабельной бумаги

и. 220 кВ и более для изоляции обмоток ВН обычно при­меняется комбинация изоляционных цилиндров с угловы­ми шайбами (рис. 5.7, б).

Изоляционные цилиндры применяются или жесткие бумажно-бакелитовые, или так называемые мягкие, состав­ленные из намотанных один на другой листов электроизо­ляционного картона. Угловые шайбы также могут быть жесткими — бумажно-бакелитовыми, или прессованными из электроизоляционного картона, или мягкими, свернуты­ми из полос картона. Для мягких цилиндров и угловых шайб в трансформаторах классов напряжения 110 кВ и бо­лее рекомендуется применять мягкий электроизоляционный картон марки А по ГОСТ 4194-83 с плотностью 900— 1000 кг/м3.

Некоторые иностранные фирмы выполняют главную изо­ляцию обмоток классов напряжения ПО кВ и выше из ка­бельной бумаги. На внутреннюю обмотку НН наматывает­ся большое число слоев кабельной бумаги с шириной по­лотна большей, чем высота обмотки НН, и общей толщиной до 40 мм и более. Затем наматывается многослойная ци­линдрическая обмотка ВН из прямоугольного провода с междуслойной изоляцией также из кабельной бумаги. Осевые масляные каналы делаются только для охлаждения внутренних слоев обмотки. После окончания намотки части цилиндров, образованных слоями кабельной бумаги, высту­пающие за длину обмотки, отбортовываются вручную, т. е. разрываются по образующим цилиндра на полоски шири­ной 40—50 мм, которые затем отгибаются под углом 90° в радиальном направлении, образуя плоские шайбы, перпен­дикулярные оси обмотки (рис. 5.7, в).

Рис. 5.8 Различные формы поперечного сечения реек

Рис. 5.9. Форма поперечного сечения реек и междукатушечных прокладок

Для образования в обмотках и между обмотками и изо­ляционными цилиндрами осевых каналов чаще всего при­меняются рейки, склеенные бакелитовым или другим лаком из полос электроизоляционного картона или изготовлен­ные из дерева твердой породы, например белого или крас­ного бука. При намотке рейки укладываются по образую­щим цилиндра и плотно прижимаются проводами к цилин­дру или ранее намотанной катушке. Толщина рейки при этом определяет ширину (радиальный размер) осевого ка­нала (рис. 5.8).

Рейки формы, показанной на рис. 5.8, а и б, применя­ются для образования осевых каналов в обмотках, не имеющих радиальных каналов. Рейки формы по рис. 5.8, в и г применяются в обмотках с радиальными каналами вме­сте с прокладками по форме рис. 5.9. Деревянные рейки ис­пользуются в обмотках класса напряжения не выше 10 кВ (испытательное напряжение 35 кВ). Полоски электроизо­ляционного картона, прикрепленные к деревянным рейкам (pиc. 5.8, а), служат для защиты изоляции обмотки от повреждений при нажиме ребром рейки при забивании рейки в обмотку.

Радиальные (горизонтальные) каналы между катушка­ми или между витками в обмотках с большим числом па­раллельных проводов обычно образуются междукатушеч­ными прокладками, выштампованными из электроизоляци­онного картона (рис. 5.9). Каждая междукатушечная или междувитковая прокладка набирается из нескольких пла­стин толщиной от 0,5—3 мм до нужной толщины, соответ­ствующей осевому размеру радиального канала. При на­личии картона большей толщины можно штамповать про­кладки и вырезать рейки из листов картона толщиной, со­ответствующей осевому или радиальному размеру канала.

Рис. 5.10 Расположение реек и междукатушечных прокладок:

1 – цилиндр; 2 – катушки; 3 –рейки; 4 – междукатушечные прокладки

Рис 5.10. обмотка с замковыми прокладками без реек

Для того чтобы связать рейки с междукатушечными прокладками, в картонных прокладках проштамповывают­ся просечки по рис. 5.9. Этими просечками междукатушеч­ные прокладки надеваются на крайнюю широкую полосу рейки (рис. 5.10) при намотке на станке или сборке об­мотки на стержне.

В обмотках некоторых типов, например в чередующих­ся, или в обмотках, наматываемых отдельными катушками, применение реек иногда оказывается неудобным. В этом случае применяются так называемые замковые междука­тушечные прокладки. Одна из конструкций замковой про­кладки изображена на рис. 5.11. Осевой канал между обмоткой и цилиндром в этом случае образуется специальны­ми прокладками со сквозной просечкой (деталь 1 на рис. 5,11). Эти прокладки 1 и прокладки, образующие между­катушечные радиальные каналы 2, прошиваются полоской картона 3, отгибаемой в междукатушечный канал,

Ввиду того, что стандартные толщины листов электро­изоляционного картона кратны 0,5 мм, расчетные толщины прокладок (и размеры каналов) должны быть также кратны 0,5 мм. Это соображение относится также к рей­кам, склеенным из полосок картона. Для упрощения на­мотки обмотки желательно размеры всех радиальных и осевых каналов выбирать кратными одному из значений стандартной толщины картона (0,5; 1,0; 1,5; 2,0; 2,5 и 3,0 мм). Существенное усложнение в комплектование реек и прокладок перед намоткой обмотки вносит набор прокла­док из картона разной толщины (например, канал 5,5 мм = = 2X2 мм - 1,5 мм) или чередование каналов 5 = 2+2+1 мм и 6 = 3+3 мм.

После установки обмоток и сборки отводов активная часть трансформатора обычно подвергается сушке под ва­куумом при температуре около 100 °С. В результате сушки междукатушечные прокладки и шайбы дают усадку, по толщине достигающую 4—6 %. При расчете всех типов об­моток, имеющих радиальные каналы или шайбы, следует учитывать, что действительный суммарный осевой размер междукатушечной (междувитковой) изоляции после сушки и опрессовки обмоток будет меньше расчетного размера на значение усадки.

Число реек по окружности для трансформаторов до 630 кВА выбирают обычно исходя из условий удобства намотки, для более мощных трансформаторов — из усло­вий механической прочности. Для ориентировки при выбо­ре числа реек могут служить следующие данные для транс­форматоров мощностью:

До 100 кВА 6 реек
От 100 до 630 кВА 8 реек
От 1000 до 1600 кВА 8-12 реек
От 2500 до 10000 кВА 12-16 реек
От 16000 до 63000 кВА 16-24 реек

В трансформаторах от 10 000 кВА и выше число реек должно быть таким, чтобы расстояние между их осями по среднему витку внешней обмотки было равно 150—180 мм. Ширина b прокладок обычно принимается равной от 40 до 60 мм, длина (см. рис. 5.9) определяется радиальным раз­мером обмотки.

Все обмотки трансформаторов по характеру намотки можно подразделить на следующие основные типы: 1) ци­линдрические; 2) винтовые; 3) катушечные.

Эти типы обмоток в свою очередь могут подразделять­ся по ряду второстепенных признаков: числу слоев или хо­дов, наличию параллельных ветвей, наличию транспозиций и т. д.

5.3. ЦИЛИНДРИЧЕСКИЕ ОБМОТКИ ИЗ ПРЯМОУГОЛЬНОГО ПРОВОДА

Простой цилиндрической называется обмотка, сечение витка которой состоит из сечений одного или нескольких параллельных проводов, а витки и все их параллельные провода расположены в один ряд без интервалов на цилин­дрической поверхности в ее осевом направлении.

Обмотка, состоящая из двух или большего числа кон­центрически расположенных простых цилиндрических об­моток (слоев), называется двухслойной или многослойной цилиндрической обмоткой (рис. 5.12).

Любая цилиндрическая обмотка может быть намотана из круглого или прямоугольного провода, однако обмотки с одним—тремя слоями для силовых трансформаторов в большинстве случаев выполняются из прямоугольного провода. На рис. 5.13 показана однослойная цилиндричес­кая параллельная обмотка из трех параллельных прямо­угольных проводов с семью витками и с высотой витка hв. Ввиду того что намотка витков ведется по винтовой линии и начала первого витка слоя и его последнего витка оказы­ваются на одной образующей цилиндра, общая высота об­мотки / определяется высотой не семи витков, а на один больше. Это правило справедливо для всех цилиндричес­ких обмоток. Для выравнивания торцовых поверхностей об­мотки к верхнему и нижнему виткам каждого слоя при­крепляется опорное разрезное кольцо, вырезанное из бумажно-бакелитового цилиндра (рис. 5.14). Крепление такого кольца к обмотке осуществляется путем подвязки хлопча­тобумажной лентой. Концы ленты, охватывающей кольцо, пропускаются между несколькими крайними витками об­моток.

При таком закреплении концов ленты, естественно, не­сколько увеличивается осевой размер обмотки. Кроме того, приходится считаться с возможностью некоторого уве­личения осевого размера вследствие неплотности намотки провода и возможных отклонений действительной толщины изоляции от расчетной. В сумме все возможные отклонения действительного осевого размера для обмоток с осевым размером от 0,2 до 1,0 м обычно составляют от 5 до 15 мм.

Рис. 5.12 Цилиндрическая обмотка:

а – простая из шести витков; б – двухслойная из 12 витков

Рис. 5.13. Цилиндрическая обмотка из семи витков

Рис. 5.14. Опорное кольцо обмотки:

а – разрезное кольцо из бумажно-бакелитового цилиндра; б – плоская развертка опорного кольца

Поэтому при расчете осевого размера такой обмотки рас­четную сумму высот проводов принимают на 5—15 мм меньше заданного осевого размера. В этом случае, когда в процессе намотки обнаруживается, что запас по высоте 5—15 мм оказывается частично или полностью излишним, в обмотку для заполнения высоты параллельно с проводом вматываются полоски электроизоляционного картона. Та­ким образом делается «разгон» обмотки так, чтобы общий осевой размер l был непременно выдержан. Полоски картона при этом наматываются на ребро и для удобства на­мотки снабжаются треугольными просечками (рис. 5.15).

В некоторых случаях, когда сортамент прямоугольного провода не позволяет получить плотного заполнения высо­ты обмотки проводами витков, может быть применен раз­гон более чем на 15 мм.

Рис. 5.15. Цилиндрическая обмотка с разгоном по высоте

Рис. 5.16. Способы намотки: а - намотка плашмя; б - намотка на ребро; в – неправильная намотка

Намотка провода может производиться плашмя (рис. 5.16, а) или на ребро (рис. 5.16, б). В первом случае боль­ший размер провода b располагается в осевом направле­нии, во втором — в радиальном. Намотка на ребро нес­колько труднее намотки плашмя, потому что привод пружинит и стремится повернуться вокруг оси так, как это показано на рис. 5.16, в. Кроме того, при намотке на ребро увеличиваются добавочные потери в обмотке, поэтому ре­комендуется избегать намотки на ребро, а в случае при­менения ее употреблять провод с соотношением сторон по­перечного сечения 1,3<b/а<3.

Цилиндрическая обмотка может быть намотана из не­скольких параллельных проводов с одинаковой площадью и одинаковыми размерами поперечного сечения.

В трехфазных трансформаторах мощностью 25—630 кВА цилиндрическая обмотка чаще всего наматывается в два слоя. При мощности 10—16 кВ-А иногда удается вы­полнить обмотку в один слой. Сравнительно редко приме­няется обмотка в три слоя. Во всех случаях для обеспе­чения нормального охлаждения каждый слой такой обмот­ки должен хотя бы с одной стороны омываться маслом.

Критерием для определения числа поверхностей слоя, омы­ваемых маслом, служит плотность теплового потока на охлаждаемой поверхности слоя q, Вт/м2, т. е. потери в об­мотке, отнесенные к единице площади поверхности. Вопрос о числе поверхностей слоя (одна или две), охлаждаемых маслом, решается в зависимости от материала обмотки (медь или алюминий), плотности тока в обмотке и ради­ального размера провода согласно с указаниями § 5.7. Плотность теплового потока в обмотках этого типа обычно не превышает 800—1000 Вт/м2 при медном проводе и 600— 800 Вт/м2 при алюминиевом.

При выполнении обмотки в два слоя витки обоих слоев соединяются, как правило, последовательно. При их парал­лельном соединении активные и реактивные сопротивления этих слоев различаются и токи нагрузки в них не будут одинаковыми, что вызовет увеличение потерь в обмотке. Такое соединение не приведет к увеличению потерь, если выполнить транспозицию витков между солями.

При последовательном соединении слоев общее число витков обмотки может быть как четным, так и нечетным. В обоих случаях число витков каждого слоя делается рав­ным половине числа витков всей обмотки. При общем не­четном числе витков число витков каждого слоя получает­ся дробным, кратным половине витка. В этом случае переход из одного слоя в другой располагается со сдвигом 180° по окружности обмотки по отношению к расположе­нию начала и конца обмотки. Полное число витков об­мотки одного стержня всегда должно быть целым числом.

В двухслойной обмотке с последовательным соединени­ем слоев напряжение между двумя крайними витками двух слоев, т. е. между началом и концом обмотки, равно пол­ному напряжению обмотки одного стержня. Изоляция меж­ду такими витками, а значит, и изоляция между слоями обмотки должна быть рассчитана по полному напряжению обмотки одного стержня. При рабочих напряжениях до 1 кВ эта изоляция легко осуществляется масляным кана­лом шириной 4—8 мм или цилиндрической прокладкой между слоями из электроизоляционного картона. При ра­бочих напряжениях обмотки 3 и 6 кВ необходим масляный канал с барьером из двух слоев электроизоляционного картона общей толщиной 2 мм. Масляный канал между слоями образуется при помощи реек (см. рис. 5.8, а или б). При напряжениях более высоких, чем 6 кВ, вследствие ус­ложнения междуслойной изоляции двухслойная цилиндрическая обмотка в трансформаторах мощностью 25—630 кВА обычно не применяется.

Механическая стойкость цилиндрической обмотки, пред­ставляющей в сечении каждого слоя, как это видно из рис. 5.13, высокую колонку с относительно малым поперечным размером и относительно неплотной намоткой, при осевых силах, возникающих при коротких замыканиях, невелика. Вследствие этого применение одно- и двухслойных цилин­дрических обмоток ограничивается обычно трансформато­рами мощностью не более 630 кВА. Также по соображе­ниям механической прочности ограничивается и применение большого числа параллельных проводов. С увеличени­ем числа параллельных проводов увеличивается высота витка, измеренная в осевом напряжении, а вместе с тем и угол наклона провода к плоскости поперечного сечения об­мотки, что при значительных осевых силах, возникающих при коротких замыканиях, может привести к «сползанию» витков. Обычно по этим соображениям не рекомендуется брать число параллельных проводов более четырех—шести при намотке плашмя и шести—восьми при намотке на ребро.

Предельный ток в обмотке одного стержня, на который может быть рассчитана такая обмотка при максимально возможном числе параллельных проводов, ограничивается сечением применяемого прямоугольного провода и обычно принимаемой плотностью тока l = 2,3*10δ-3,5*10δ А/м2— для медных и J = 1,5*10δ-2,5*10δ А/м2 — для алюминие­вых обмоток. Такие обмотки применяются для токов в об­мотке одного стержня не свыше 800 А из медного провода и не свыше 600—650 А из алюминиевого провода.

В производстве при намотке на обмоточном станке двухслойная цилиндрическая обмотка является более про­стой и дешевой, чем винтовая или непрерывная катушеч­ная, но существенно уступает по этим показателям много­слойной цилиндрической обмотке, наматываемой из алю­миниевой или медной ленты.

Цилиндрическая обмотка из прямоугольного провода может применяться при сечении витка не менее 5,04 мм2, равном минимальному сечению медного прямоугольного провода по сортаменту, что при наименьшей плотности тока в медном проводе соответствует нижнему пределу рабочего тока обмотки 15—18А, алюминиевом проводе с минимальным сечением 6,39 мм2 10—13 А. В соответствии со всеми приведенными соображениями одно- и двухслойная цилиндрическая обмотка из прямо­угольного провода с успехом широко применяется как об­мотка НН трех- и однофазных масляных силовых транс­форматоров с мощностью на один стержень S'<=250 кВА при напряжении обмотки не выше 6 кВ. Этот тип обмотки может также применяться в качестве обмотки ВН при на­пряжении в пределах до 6 кВ.

В силовых трансформаторах мощностью от 1000кВ*А и выше все более широкое распространение получает мно­гослойная цилиндрическая обмотка из провода прямоуголь­ного сечения с последовательным соединением слоев (рис. 5.17). Этот тип обмотки отличается от простой цилиндрической обмотки числом слоев, и замечания, сделанные ранее относительно числа параллельных проводов и их размеще­ния в слое, относительно опорных колец, разгона витков и др., в основном остаются справедливыми и для каждого слоя многослойной обмотки. Так же как и в простой, в мно­гослойной цилиндрической обмотке все параллельные про­вода должны иметь одинаковые размеры и площадь попе­речного сечения.

Рис. 5.17. Многослойная цилиндрическая обмотка из прямоугольного провода:

1 - междуслойная изоляция из кабельной бумаги; 2 – бумажно-бакелитовое опорное кольцо; 3 – рейка, образующая охлаждающий канал.

В этой обмотке не применяется намотка на ребро, по­скольку добавочные потери возрастают пропорционально второй степени числа слоев и четвертой степени радиаль­ного размера провода.

Направление намотки слоев многослойной обмотки различно. Все нечетные слои, считая изнутри, имеют одно направление намотки, обычно левое, все четные — другое, обычно правое. Напряжение между первым витком какого-либо слоя и последним витком следующего слоя равно сумме рабочих напряжений двух слоев и при рабочем на­пряжении обмотки 35 кВ может достигать 5000—6000 В. В качестве междуслойной изоляции обычно применяется ка­бельная бумага, намотанная в несколько слоев. Для пре­дотвращения разряда между соседними слоями ширина полосы кабельной бумаги должна быть больше высоты об­мотки на 20—50 мм. Междуслойную изоляцию можно при­нять по табл. 4.7. Каждый слой обмотки внизу и вверху должен иметь опорные кольца, вырезанные из бумажно-бакелитового цилиндра (см. рис. 5.14, а). Эти кольца при­крепляются к крайним виткам соответствующего слоя об­мотки хлопчатобумажной лентой. Для получения доста­точной поверхности охлаждения в этих обмотках предусматриваются один или два осевых канала между слоями. Ширина каждого канала около 1/100 высоты об­мотки. Критерием для выбора числа каналов служит плот­ность теплового потока (потерь в обмотке) на охлаждае­мой поверхности. С учетом перепада температуры при дви­жении тепла внутри обмотки плотность теплового потока на ее поверхности рекомендуется допускать не более 1200—1400 Вт/м2.

Многослойная цилиндрическая обмотка из прямоуголь­ного провода находит применение в качестве обмоток ВН и НН трансформаторов мощностью от 630 до 40 000—80 000 кВА классов напряжения 10 и 35 кВ. Ее широкое распро­странение определяется возможностью обеспечить более плотное заполнение окна магнитной системы, использовать более эффективную теплоотдачу от обмотки к маслу в вертикальных каналах по сравнению с горизонтальными каналами и получить более технологичную конструкцию по сравнению с обмотками других типов. Эта обмотка при воздействии импульсных перенапряжений также имеет бо­лее высокую электрическую прочность по сравнению с ка­тушечными обмотками.

Для защиты от грозовых перенапряжений многослойная цилиндрическая обмотка при классе напряжения 35 кВ может быть дополнительно защищена электрическим экра­ном. Экран — незамкнутый цилиндр из немагнитного ме­талла толщиной 0,2—0,5 мм — располагается под внут­ренним слоем по всей высоте обмотки и электрически сое­диняется с ее линейным концом (см. § 4.5).

Особое значение для многослойных цилиндрических об­моток из прямоугольного провода, предназначенных для трансформаторов мощностью от 630 до 80 000 кВА, имеет обеспечение достаточной механической прочности этих об­моток при коротком замыкании трансформатора. Это до­стигается плотной намоткой каждого слоя обмотки с ме­ханическим осевым поджимом. Рекомендуется после намотки и сушки опрессовать обмотку на прессе с силой, близкой к расчетной осевой силе при коротком замыкании. Обмотки, намотанные и обработанные по такой технологии, обычно хорошо выдерживают полное короткое замыкание трансформатора. Увеличение механической прочности мо­жет дать вакуумная пропитка обмотки лаком после намот­ки и сушки с последующим запеканием лака. Некоторые иностранные фирмы применяют также склеивание витков каждого слоя и слоев между собой специальной пастой, наносимой при намотке обмотки.

Рис. 5.18. Многослойная цилиндрическая обмотка НН из алюминиевой ленты:

1 – алюминиевая лента; 2 – междуслойная изоляция из кабельной бумаги; 3 – бортик из электроизоляционного картона.

Многослойная цилиндрическая обмотка может быть намотана также из неизолированной  алюминиевой или медной ленты. Этот тип обмотки находит применение в трансформаторах мощностью до 1000 кВА при классе на­пряжения не выше 1 кВ. Каждый слой обмотки состоит из одного витка, высота которого (ширина ленты) равна вы­соте обмотки. Изоляция между витками образуется одним-двумя слоями кабельной бумаги, ширина полосы которой на 16—24 мм больше ширины ленты. Для образования же­сткой торцовой опорной изоляции на краях полосы бума­ги приклеивается бортик — полоска электроизоляционного картона с толщиной, равной толщине ленты, и шириной от 8 до 12 мм (рис. 5.18).

Этот тип обмотки из более дешевого проводникового материала, с меньшим количеством изоляционных матери­алов, чем другие типы обмоток, дает более высокий коэффициент заполнения окна магнитной системы активным ма­териалом и значительно проще и дешевле в изготовлении на станке.

Обмотки этого типа, намотанные из алюминиевой лен­ты, обладают высокой теплопроводностью в осевом и ра­диальном направлениях, что приводит к более равномер­ному распределению температуры по высоте и ширине обмотки и снижению температуры наиболее нагретой точ­ки обмотки по сравнению с обмотками, намотанными из изолированного провода. Медная лента в трансформаторах мощностью до 1000 кВА обычно не применяется.

Обмоточный станок, предназначенный для намотки об­моток этого типа, должен быть оборудован устройствами для установки рулона ленты, рулона кабельной бумаги, рулончиков узкой полосы картона для бортиков, а также устройством для сварки начала и конца ленты с алюми­ниевыми шинами отводов. При продольной резке ленты стандартной ширины для получения ленты с шириной, равной высоте витка (обмотки), не должно быть заусен­цев, которые могут нарушить междувитковую изоляцию. Заусенцы должны быть тщательно удалены.

Существенным недостатком обмотки, намотанной из алюминиевой ленты, является ее меньшая механическая прочность при воздействии радиальных сил при коротком замыкании трансформатора по сравнению с обмотками, намотанными из изолированного провода. Под воздействи­ем этих сил обмотка может потерять механическую стой­кость (см. § 7.3). В целях достижения необходимой меха­нической стойкости обмотку этого типа рекомендуется на­матывать из отожженной алюминиевой ленты по ГОСТ 13726-78, изготовляемой из алюминия марок А6 или А5 с химическим составом по ГОСТ 11069-74.

Обмотки ВН классов напряжения 6, 10 и 35 кВ транс­форматоров мощностью до 1000 кВА имеют не менее 200 витков и не могут быть намотаны в виде одной катушки с высотой витка, равной высоте всей обмотки. Материалом такой обмотки может служить уже не лента, а фольга— материал с толщиной не более 0,2 мм.

Отводы от обмотки НН, намотанной из алюминиевой ленты, могут быть выполнены в виде шин, надежно прива­риваемых к торцам ленты (рис. 5.19, а). При более тонкой фольге отводы от обмотки ВН можно выполнить с меньшей надежностью, например с отгибом конца ленты фольги по рис. 5.19, б.

Рис. 5.19. Образование отвода от обмотки из ленты или фольги:

а – алюминиевая шина, прикрепленная точечной сваркой; б – образование отвода путем отворота ленты (фольги).

Необходимость разделения обмотки ВН на катушки, со­единяемые при помощи пайки, и трудность крепления от­водов к катушкам из фольги с толщиной 0,1—0,2 мм при­водят к тому, что часто предпочитают обмотку НН выпол­нить из ленты, а обмотку ВН из провода.

5.4. МНОГОСЛОЙНЫЕ ЦИЛИНДРИЧЕСКИЕ ОБМОТКИ ИЗ КРУГЛОГО ПРОВОДА

В трансформаторах мощностью от 25 до 630 кВА наш­ли широкое применение многослойные цилиндрические обмотки из круглого медного или алюминиевого провода

Рис. 5.20. Многослойная цилиндрическая обмотка из круглого провода.

Рис. 5.21. Изоляция в торцовой части многослойной цилиндрической обмотки из круглого провода.

в качестве обмоток ВН при напряжениях от 3 до 35 кВ и обмоток НН при напряжениях от 3 до 10 кВ (рис. 5.20). В многослойной цилиндрической обмотке с последова­тельным соединением слоев вследствие значительного чис­ла витков в слое между соседними витками, лежащими в разных слоях, могут возникнуть значительные напряжения. Так, между первым витком какого-либо слоя и рядом ле­жащим последним витком последующего слоя при нор­мальной работе трансформатора возникает рабочее, а при испытании индуктированным напряжением — испытатель­ное напряжение двух слоев обмотки. В трансформаторах мощностью до 630 кВА при классе напряжения от 3 до 35 кВ суммарное рабочее напряжение двух слоев может достигнуть 5000—6000 В, а испытательное 10 000—12 000 В. Собственная изоляция провода в этих условиях оказыва­ется недостаточной, и для обеспечения электрической проч­ности обмотки приходится применять дополнительную изо­ляцию между слоями. В качестве такой междуслойной изоляции с успехом применяется кабельная бумага, поло­женная в несколько слоев (рис. 5.21). Применение меньше­го числа слоев более толстого электроизоляционного кар­тона не оправдывает себя, так как картон менее эластичен, чем кабельная бумага, и при намотке сильно натянутого провода при не совсем гладкой поверхности обмотки иног­да дает местные изломы, что в дальнейшем приводит к пробою междуслойной изоляции.

Для предохранения обмотки от разряда между сосед­ними или вообще различными слоями по ее торцовой по­верхности высота междуелойной изоляции делается обыч­но большей, чем высота слоя обмотки, на 20—50 мм (на две стороны), благодаря чему искусственно увеличивается длина пути возможного разряда. Для выравнивания высо­ты слоя обмотки с высотой междуслойной изоляции и со­здания твердой опорной поверхности обмотки к каждому слою обмотки прикрепляются так называемые бортики, т. е. свернутые в кольцо полоски электроизоляционного карто­на толщиной, равной толщине слоя. При намотке обмотки эти бортики предварительно приклеиваются к более широ­ким (40—50 мм) полоскам телефонной бумаги (толщиной 0,05 мм), а затем эти полоски укладываются на междуслойную изоляцию и прижимаются крайними витками сле­дующего слоя.

Витки, лежащие во внутренних слоях многослойной ци­линдрической обмотки, не имеют непосредственного сопри­косновения с охлаждающей средой — маслом или возду­хом. Тепло, выделяющееся в этих витках, должно прохо­дить в радиальном направлении через толщу слоев проводов и междуслойной изоляции, отделяющих эти слои от охлаждающего  канала. При прохождении теплового потока через толщу обмотки возникает внутренний пере­пад температуры тем больший, чем больше число слоев об­мотки и толщина междуслойной изоляции, и достигающий в отдельных случаях 10—12°С.

Для уменьшения этого перепада температуры старают­ся увеличить общую поверхность охлаждения и уменьшить радиальный размер обмотки. Этого можно достигнуть, раз­делив всю обмотку на две катушки с осевым каналом между ними.

Рис 5.22. Различные варианты выполнения многослойной цилиндрической обмотки:

а – обмотка ВН на цилиндре; б – обмотка ВН на рейках; в – обмотка НН; г – обмотка ВН на цилиндре с каналом; д – обмотка ВН на рейках с каналом

В обмотках НН, располагаемых между стержнем и обмоткой ВН, такой охлаждающий канал делит обмотку на две катушки с одинаковым числом слоев (рис. 5.22, в). В обмотках ВН, у которых внешняя поверхность свободно обтекается маслом и охлаждается лучше, чем внутренние поверхности, число слоев внутренней катушки составляет от 1/3 До 2/3 общего числа слоев. Расположение обмотки на цилиндре для различных вариантов может быть выполнено по рис. 5.22, а, б, г, д. С учетом этого перепада темпера­туры рекомендуется ограничивать перепад на охлаждаемой поверхности обмотки и допускать плотность теплового по­тока не более 800—1000 Вт/м2.

Уменьшению внутреннего перепада температуры спо­собствует также пропитка обмотки лаком. Главной целью пропитки является склеивание витков обмотки между со­бой и с междуслойной изоляцией, чем создается повыше­ние механической прочности обмотки при коротких замы­каниях трансформатора. Электрическая прочность внут­ренней изоляции обмотки от пропитки лаком не повыша­ется, а в рассматриваемых многослойных цилиндрических обмотках, пропитываемых обычно простым погружением в лак с выдержкой в лаке без вакуумирования, даже несколько понижается. Понижение электрической прочности внутренней изоляции обмотки в этом случае объясняется пузырьками воздуха, остающимися главным образом меж­ду листами междуслойной изоляции. Для более полного удаления воздуха из обмотки рекомендуется производить пропитку лаком под вакуумом.

Многослойная цилиндрическая обмотка может быть на­мотана одним круглым проводом, а также, редко, двумя параллельными круглыми проводами. Ввиду того что все параллельные провода каждого витка располагаются у такой обмотки в одном и том же слое и, следовательно, сцеплены практически с одной и той же частью потока рас­сеяния, обмотка этого типа при последовательном соедине­нии слоев не требует транспозиции параллельных прово­дов.

Пределы применения обмотки этого типа по току опре­деляются сортаментом круглого медного обмоточного про­вода от наименьшего сечения 0,1134 мм2 при диаметре 0,38 мм до двух параллельных проводов наибольшего диаметра 5,20 мм и сечения 2х21,22 = 42,44 мм2. Это соответствует максимально возможному току обмотки одного стержня до 40—60 А при одном проводе и до 80—120 А при двух па­раллельных проводах в медных обмотках.

Круглый алюминиевый провод применяется диаметра­ми от 1,32 до 8 мм и сечениями от 1,37 до 50,24 мм2, что соответствует максимально возможному току обмотки 120—130 А, поскольку обмотки из провода диаметром 6— 8 мм наматываются только в один провод.

Так же как и в других цилиндрических обмотках, вы­сота каждого слоя (осевой размер обмотки) определяется числом витков в слое, увеличенным на единицу.

В случае применения многослойной цилиндрической об­мотки в качестве обмотки ВН витки, служащие для ре­гулирования напряжения, располагаются в наружном слое обмотки или при большом числе слоев в двух наружных слоях. Регулировочные ответвления часто делаются путем вывода петли обмоточного провода без обрыва его (рис. 5.23, в). Эти ответвления выводятся к верхней торцовой части обмотки и укладываются под верхний слой витков по образующей или под хлопчатобумажную киперную ленту, которой обмотка обматывается по наружной цилиндричес­кой поверхности для повышения механической прочности (рис. 5.23, а к б). Для изоляции ответвления от слоев об­мотки, между которыми оно проходит, обычно применяют ся полоски электроизоляци­онного картона толщиной 0,5 и шириной 20—30 мм.

Рис. 5.23 Расположение регулировочных ответвлений в многослойной цилиндрической обмотке

а – под верхним слоем витков

б – под бандажом из киперной ленты

в – выполнение ответвления

Витки, отключаемые при регулировании напряжения на каждой ступени, должны быть разделены на две рав­ные группы, расположенные в верхней и нижней полови­нах слоя симметрично отно­сительно середины высоты обмотки. Такое расположе­ние уменьшает осевые силы,

действующие на всю обмотку, и силы, действующие на от­дельные витки внешнего слоя при коротком замыкании трансформатора. По условиям механической прочности применение многослойной обмотки из круглого провода ог­раничивается трансформаторами мощностью не более 630 кВА.

Межслойная изоляция рассчитывается по суммарно­му рабочему напряжению двух слоев обмотки. Обмотки с рабочим напряжением до 11—15 кВ оказываются при этом достаточно прочными и при воздействии на них импульс­ных перенапряжений. В обмотках с рабочим напряжением 35 кВ для сглаживания неравномерного распределения напряжений при импульсах хорошие результаты дает раз­мещение под внутренним слоем обмотки металлического немагнитного экрана (рис. 5.21) — медного, латунного или алюминиевого листа толщиной 0,4—0,5 мм, свернутого в виде разрезанного цилиндра. Разрез шириной 30—40 мм по образующей цилиндра делается во избежание образова­ния из цилиндра короткозамкнутого витка. Высота экра­на принимается обычно равной высоте обмотки l. Экран изолируется от первого (внутреннего) слоя обмотки межслойной изоляцией из кабельной бумаги. Такая же изо­ляция укладывается под экран.

При наличии экрана ввод линейного конца делается к внутреннему слою обмотки  и экран электрически соединя­ется с началом обмотки.

В обмотках напряжением 35 кВ имеющих экран, отпадает необходимость усиления изоля­ции входных витков (или слоев).

Во избежание пробоя витковой изоляции вследствие подъема напряжения у нейтрали при воздействии на об­мотку импульсного перенапряжения усиливается изоляция последних четырех-пяти витков на каждой ступени регу­лирования напряжения.

В производстве многослойная цилиндрическая обмотка из круглого провода для трансформаторов мощностью до 630 кВА является более простой и дешевой по сравнению с применяемой иногда непрерывной катушечной обмоткой, поскольку позволяет вести намотку непрерывным прово­дом без перекладки витков и точной укладки их в катушки, с частотой вращения оправки, на которой наматывается об­мотка, до 100—200 об/мин.

Кроме простоты намотки этот тип представляет боль­шие удобства в выполнении регулировочных ответвлений. При выполнении изоляционного цилиндра между обмотка­ми ВН и НН в виде «мягкого» цилиндра, намотанного из рольного электроизоляционного карто­на или кабельной бумаги, обмотки ВН и НН на один стержень трансформа­тора могут быть изготовлены в обмо­точном цехе в виде готового комплек­та, что в значительной мере облегчает установку обмоток на стержень и уп­рощает сборку трансформатора.

Многослойной цилиндрической ка­тушечной обмоткой называется обмот­ка, составленная из ряда отдельных, расположенных в осевом направлении катушек, представляющих собой мно­гослойные цилиндрические обмотки.

Рис. 5.24 Двойная (а) и одинарная (б) катушки. Межслойная изоляция картон (а) и кабельная бумага (б)

Многослойная цилиндрическая ка­тушечная обмотка, как правило, вы­полняется из одного круглого провода без применения параллельных прово­дов. Для удобства сборки такая обмотка обычно выполняется в виде спаренных катушек, из ко­торых одна наматывается правой, а другая левой намот­кой. Применение различного направления намотки в сосед­них катушках позволяет производить их последовательное соединение, соединяя вместе одноименные, например внут­ренние, концы. При этом начало и конец каждой такой пары катушек будут находиться на наружной поверхности обмотки. Такие две последовательно соединенные катуш­ки правой и левой намоток, имеющих начало и конец на наружной поверхности, комплектно изготовленные, носят название двойной катушки (рис. 5.24, а). Каждая из двух одинарных простых катушек, входящих в двойную, может отличаться от другой катушки не только направлением на­мотки, но и числом витков, изоляцией, витковой и межслойной, а в отдельных случаях даже сечением провода. Применение в многослойной цилиндрической катушечной обмотке двойных катушек обусловливает обязательное чет­ное число одинарных катушек на стержне трансформатора.

5.5. ВИНТОВЫЕ ОБМОТКИ

Одноходовой винтовой обмоткой трансформатора назы­вается обмотка, витки которой следуют один за другим в осевом направлении по винтовой линии, а сечение каждого витка образовано сечениями нескольких параллельных про­водов прямоугольного сечения, расположенными в один ряд в радиальном направлении обмотки (рис. 5.25, а). Обычно витки обмотки разделяются радиальными масля­ными или воздушными охлаждающими каналами. В неко­торых обмотках эти каналы могут быть сделаны через два витка. Винтовая одноходовая обмотка может быть намота­на и без радиальных каналов с плотным прилеганием вит­ка к витку.

Обмотка, состоящая из двух (или более) одноходовых обмоток, взаимно расположенных подобно ходам резьбы двухходового (многоходового) винта, назыается двухходо­вой (многоходовой) винтовой обмоткой. Сечение витка при этом образуется общим поперечным сечением проводов всех ходов. Эта обмотка также может быть выполнена с ради­альными каналами между всеми витками и внутри витков между образующими их ходами, или с каналами только между витками и без каналов внутри витков, или совсем без радиальных каналов с плотным прилеганием всех хо­дов.

Винтовая обмотка выполняется только из прямоугольно­го провода. При этом все параллельные провода этой об­мотки обязательно должны иметь равные не только пло­щади, но и размеры поперечного сечения. При несоблюде­нии этого правила становится невозможным уравнивание

Рис. 5.25. Винтовая обмотка:

а – одноходовая их шести витков; б – двухходовая из четырех витков.

сопротивлений параллельных проводов путем их переклад­ки в процессе намотки обмотки.

В ряде случаев, когда сечение витка по расчету получа­ется весьма значительным, могут быть приняты две груп­пы параллельных проводов и обмотка выполнена в виде двухходовой. На рис. 5.25, б изображена двухходовая вин­товая обмотка. Сравнительно редко применяется четырехходовая обмотка.

Обе группы проводов у начала и конца обмотки соеди­няются параллельно. В большинстве случаев в двухходо­вых обмотках радиальные каналы выполняются как меж­ду витками, так и внутри витка между группами проводов (рис. 5.26, б). Иногда для экономии места по высоте обмотки радиальные каналы делаются только между витками и обе группы проводов в каждом витке наматывают­ся вплотную с прокладкой между группами толщиной 0,5— 1,0 мм (см. рис. 5.26, в). Прокладка обеспечивает механи­ческую устойчивость обмотки. Двух- и четырехходовая винтовая обмотка может быть также выполнена совсем без радиальных каналов и без прокладок в витках и между витками (рис. 5.26, г).

Обычно винтовая обмотка наматывается на жестком бумажно-бакелитовом цилиндре на рейках, расположенных по образующим цилиндра. Для мощных трансформаторов

Рис. 5.26. Сечение витка винтовой обмотки:

а – одноходовой; б – двухходовой с каналом между двумя группами проводов; в – двухходовой бех канала внутри витка; г – двухходовой без радиальных каналов.

(более 10 000 кВ*А на один стержень) обмотка может быть намотана на специальной оправке, затем снята с нее и при насадке на стержень изолирована от него мягким цилинд­ром из электроизоляционного картона. Радиальные каналы между витками в обоих случаях образуются междувитковыми прокладками из электроизоляционного картона, на­низываемыми на рейки.

В винтовой обмотке параллельные провода наматывают­ся на цилиндрических поверхностях с разными диаметра­ми. Вследствие этого активные сопротивления параллельных проводов получаются неравными. В трансформаторах с концентрическим расположением обмоток ВН и НН поле рассеяния направлено в осевом направлении обмоток. В радиальном направлении по ширине каждой из обмоток индукция поля рассеяния возрастает по прямой линии от внешнего края обмотки к каналу между обмотками ВН и НН (рис. 5.27). Различное положение проводов в поле

Рис. 5.27. Схема транспозиций параллельных проводов в одноходовой обмотке:

а — четное число проводов; б — нечетное число проводов

рассеяния обмотки приводит к неравенству реактивных, а следовательно, и полных сопротивлений параллельных проводов. Для выравнивания полных сопротивлений проводов во избежание неравномерного распределения тока в винтовой обмотке обязательно должна производиться транспозиция (перекладка) проводов.

 В одноходовой обмотке обычно применяют комбинацию двух видов транспозиции— групповую, когда все параллельные провода делятся на две или большее число групп и изменяется взаимное расположение этих групп без изменения расположения проводов в группе, и общую, при которой изменяется взаимное расположение всех проводов. При применении транспозиции этих видов обмотка делится по длине на четыре равных участка, содержащих по 1/4 всех витков обмотки. На границах этих участков производится три транспозиции — две групповые на 1/4 и 3/4 общего числа витков, считая от начала обмотки, и одна общая на 2/4 общего числа витков. В групповых транспозициях все параллельные провода делятся на две равные группы (при нечетном числе проводов одна из групп имеет на один провод больше, чем другая). В общих транспозициях каждый провод перекладывается самостоятельно. Принципиальная схема транспозиции для одноходовой обмотки из шести параллельных проводов показана на рис. 5.27, а. Такой же способ транспозиции может быть применен и при нечетном числе параллельных проводов, например при пяти проводах (рис. 5.27, б).

Для получения правильной транспозиции, дающей действительное выравнивание сопротивлений проводов, необходимо группировать провода так, чтобы в обеих групповых транспозициях в одни и те же группы соединялись одни и те же проводники, как это показано на рис. 5.27. Чтобы проверить правильность схемы транспозиций, достаточно для каждого провода просуммировать номера мест, которые он занимает в витке на всех четырех участках обмотки. Так по рис. 5.27, а для провода 1, выделенного жирной линией, эта сумма дает 1+4+3+6=14, по рис. 5.27, б для соответствующего провода 1+4+2+5=12. В правильно транспонированной обмотке такие суммы для всех параллельных проводов должны получаться равными между собой. Нетрудно убедиться, что в схемах транспозиций обмоток, изображенных на рис. 5.27, это правило соблюдается.

Необходимо заметить, что такая транспозиция является совершенной только для четырех параллельных проводов. При большем числе проводов эта транспозиция не является полностью совершенной, однако у силовых трансформаторов общего назначения дает почти равномерное распределение тока между параллельными проводами и относительно малые добавочные потери.

При числе параллельных проводов обмотки от 12—15 и больше применяются и более сложные схемы транспозиций [6].

Внешний вид общей и групповой транспозиции показан на рис. 5.28. Как видно из рисунка, каждая такая транспозиция увеличивает осевой размер обмотки на высоту витка и радиального канала. Таким образом, общий осевой размер (высота) обмотки при двух групповых и одной общей транспозициях увеличивается на высоту трех витков и трех каналов. Следует также помнить, что за счет совпадения на одной образующей начала и конца обмотки осевой размер увеличивается еще на высоту одного витка и одного канала.

В двухходовой винтовой обмотке в каждом ее ходу могут быть также сделаны групповые и общие транспозиции. Однако в такой обмотке можно применить и другой, более совершенный вид транспозиции. Сечение витка такой обмотки, изображенное на рис. 5.29, состоит из двух групп проводов. Идея транспозиции заключается в постепенном круговом перемещении проводов в сечении витка по мере намотки обмотки так, чтобы каждый провод побывал во всех возможных положениях, проходя в них равные отрезки (выражаемые обычно в числе витков). В отличие от групповой и общей транспозиций, сосредоточенных в трех точках обмотки, такую транспозицию можно назвать равномерно распределенной. Обычно в двухходовой обмотке число транспозиций делают равным числу параллельных проводов или их удвоенному числу. На рис. 5.29 показана схема равномерно распределенной транспозиции в двухходовой обмотке из восьми параллельных проводов. Во избежание усложнения чертежа на схеме показано перемещение только двух проводов — 1 и 5.

Расстояния между двумя транспозициями при числе параллельных проводов nв принимаются равными 1/nв общего числа витков обмотки, а крайние участки у начала и конца обмотки вполовину короче, т. е. 1/2 nв общего числа витков.

Рис.5.28. Увеличение высоты одноходовой обмотки при транспозиции обмотки из четырех проводов:

а – групповая транспозиция; б – общая транспозиция

Рис.5.29. Схема равномерно распределенной транспозиции в двухходовой обмотке из восьми параллельных проводов

По схеме рис. 5.29 нетрудно убедиться в том, что при таком распределении транспозиций каждый провод по мере прохождения по длине обмотки пройдет каждое из nв возможных положений в сечении витка на 1/nв общей длины обмотки.

Практически равномерно распределенная транспозиция выполняется так, как показано на рис. 5.30. Верхний провод 4 левой группы отгибается вправо и становится верх ним проводом правой группы.

Рис. 5.30. Выполнение равномерно распределенной транспозиции

Одновременно нижний провод 8 правой группы переходит нижним проводом в левую группу. Провода левой группы 1, 2 и 3 поднимаются на одно положение вверх, а провода 5, 6 и 7 правой опускаются на одно положение вниз.

Равномерно распределенная транспозиция в двухходовой обмотке может быть сделана при любом числе параллельных проводов и дает более полное уравнение их сопротивлений, чем групповые и общие транспозиции. Другое преимущество равномерно распределенной транспозиции заключается в том, что она не требует добавочного места по высоте обмотки. Однако при определении изоляционных расстояний следует учитывать, что в местах транспозиции радиальный размер обмотки увеличивается на одну толщину провода.

В четырехходовой обмотке равномерно распределенная транспозиция выполняется самостоятельно в каждой паре ходов. Поэтому трехходовая винтовая обмотка с такой транспозицией обычно не применяется, но винтовая обмотка с любым числом ходов может быть выполнена из транспонированного провода (см. § 5.2). При этом отпадает необходимость в дополнительной транспозиции параллельных проводников, помимо той, которая сделана в самом проводе.

Плотность тока в обмотках силовых трансформаторов, выпускаемых в последние годы с относительно малыми потерями короткого замыкания, составляет в медных обмотках около 2·10- 3·106 (иногда до 3,5·106) и в алюминиевых 1,2·10- 2·106А/м2. При такой плотности тока потери в единице объема обмотки и плотность теплового потока на осевых и радиальных охлаждаемых поверхностях витков невелики и возникает возможность существенного уменьшения числа каналов в обмотке вплоть до полного отказа от горизонтальных каналов.

Винтовая обмотка без горизонтальных каналов с плотным прилеганием витков в осевом направлении может быть одно-, двух- и четырехходовой с обычными для таких обмоток транспозициями. Такая обмотка наматывается на цилиндре на рейках типа рис. 5.8, а и б или на оправке без реек и без прокладок между ходами. Не исключена намотка двухслойной винтовой обмотки, т. е. двух концентрических винтовых обмоток левого и правого направлений намотки, соединяемых последовательно.

При использовании винтовой обмотки без горизонтальных каналов следует принимать во внимание то, что плотность теплового потока на охлаждаемой поверхности обмотки существенно возрастает и ее не рекомендуется допускать более 1200—1400 Вт/м2. При этом превышение температуры поверхности обмотки, имеющей только вертикально расположенные поверхности, охлаждаемые маслом, над температурой масла составляет 21—23°С, что примерно на 20 % ниже, чем в обмотке с витками, имеющими горизонтальные и вертикальные поверхности. Необходимо также учитывать, что в обмотке без горизонтальных каналов добавочные потери могут быть в 1,5—2 раза больше, чем в обмотке с тем же числом витков и с тем же числом, размерами и расположением параллельных проводов, но с горизонтальными каналами.

В механическом отношении при возникновении осевых механических сил винтовая обмотка является значительно более прочной, чем одно- и двухслойная цилиндрическая. Параллельные провода в каждом витке располагаются в ней не в осевом, а в радиальном направлении, образуя относительно большую опорную поверхность. Механическая жесткость обмотки усиливается рейками, идущими по всей длине обмотки, и связанными с ними горизонтальными прокладками, плотно зажатыми между витками обмотки.

В трансформаторах с ПБВ часто регулировочные витки обмотки ВН располагаются в середине ее высоты, что при работе обмотки ВН на низших ступенях регулирования напряжения приводит к возникновению в зоне отключенных витков поперечного магнитного поля и значительных осевых сил при коротком замыкании (см. § 7.3). Винтовая обмотка позволяет существенно ограничить эти силы путем разгона витков в середине ее высоты в зоне размещения отключаемых регулировочных витков обмотки ВН. Разгон витков применяется в трансформаторах с мощностью S≥1000 кВ·А и достигается путем увеличения двух-трех радиальных каналов в середине высоты обмотки НН до 15—20мм. Достаточную механическую прочность обмотка получает только при некотором минимальном сечении витка, не менее 75—100мм2, что соответствует току около 300А для медных и 150—200А для алюминиевых обмоток.

Этот нижний предел допустимого сечения витка и тока обмотки соответствует силовым трансформаторам с мощностью S = 160—1000 кВ·А. При больших мощностях нижним пределом применения винтовой обмотки считается обычно 400—500 А.

По соображениям механической прочности, а также удобства выполнения транспозиций число параллельных проводов принимается обычно не менее четырех.

Наличие масляных каналов между соседними витками обеспечивает высокую электрическую прочность винтовой обмотки, и она находит широкое применение как обмотка НН в трансформаторах с напряжением НН от 230В до 35кВ включительно.

На стороне ВН винтовая обмотка совершенно не нашла применения ввиду неудобства выполнения ответвлений для регулирования напряжения.

В производстве винтовая обмотка существенно дороже многослойной цилиндрической обмотки из прямоугольного провода.

Винтовая обмотка используется также в качестве обмотки НН в сухих трансформаторах с естественным воздушным охлаждением при мощностях от 250 до 1600 кВ·А и выборе размеров радиальных и осевых воздушных каналов в соответствии с требованием табл. 9.26 и 9.2в.

5.6. КАТУШЕЧНЫЕ ОБМОТКИ

Обмотка, состоящая из ряда последовательно соединенных катушек, намотанных в виде плоских спиралей из одного или более проводов прямоугольного сечения и расположенных в осевом направлении обмотки, с радиальными каналами между всеми или частью катушек называется катушечной обмоткой. Если катушечная обмотка наматывается непрерывным проводом или несколькими непрерывными параллельными проводами, она называется непрерывной катушечной обмоткой (рис. 5.31).

Рис. 5.31. Непрерывная катушечная обмотка

Рис. 5.32. Переход между катушками с транспозицией трех параллельных проводов

Катушечная обмотка, собранная из отдельно намотанных катушек, называется дисковой катушечной обмоткой.

Непрерывная катушечная обмотка не имеет обрывов и паек провода. Все переходы из одной катушки в другую осуществляются кратчайшим путем по направлению внутренней или внешней образующей обмотки. Такая обмотка может быть намотана также из двух, трех, а иногда и более параллельных проводов. В этом случае, во избежание излишнего увеличения радиального размера обмотки в месте перехода из катушки в катушку, каждый из параллельных проводов переходит самостоятельно так, как изображено на рис. 5.32. При таком переходе провода меняются местами: наружный провод катушки переходит - внутрь, внутренний наружу и т. д. При этом одновременно осуществляется и транспозиция проводов, необходимая для уравнивания полных сопротивлений параллельных проводов. Необходимость транспозиции обусловливается тем, что параллельные провода наматываются на окружностях разных диаметров и находятся в различных зонах поля рассеяния.

Вследствие значительного угла изгиба провода на ребро в местах перехода из одной катушки в другую, изоляция проводов может быть повреждена. Поэтому для обеспечения надлежащей электрической прочности обычно применяют в местах перехода добавочную изоляцию провода в виде оплетки полосками кабельной бумаги или лакоткани или подвязки изоляционных коробочек из электроизоляционного картона.

Непрерывная катушечная обмотка может быть намотана на жестком бумажно-бакелитовом цилиндре, на рейках, расположенных по образующим цилиндра. При применении мягких изоляционных цилиндров из электроизоляционного картона обмотка наматывается на станке на рейках, расположенных на временной цилиндрической оправке без изоляционного цилиндра. В этом случае цилиндр наматывается при сборке трансформатора перед насадкой соответствующей обмотки. Для образования радиальных междукатушечных каналов применяются прокладки, штампованные из электроизоляционного картона, как показано на рис. 5.9 и 5.10.

Радиальные каналы в обмотке обычно выполняются между всеми катушками, однако в трансформаторах с пониженными потерями короткого замыкания и в алюминиевых обмотках (§ 5.2 и 5.7) иногда каналы могут быть сделаны через две катушки. В этом случае половина радиальных каналов между катушками заменяется разрезными шайбами по две шайбы толщиной 0,5 мм взамен каждого канала. Пара катушек, разделенных шайбами или радиальным каналом, называется двойной катушкой.

Переход провода из одной катушки в другую в непрерывной катушечной обмотке делается в промежутках между прокладками, образующими радиальные каналы. Число витков в каждой катушке, указываемое в расчетной записке, может быть как целым, так и дробным. В последнем случае знаменатель дроби указывает число междукатушечных прокладок (реек) по окружности обмотки. Так, при 16 прокладках (рейках) в обмотке правильным будет указание намотать в катушке, например, 84/16 витка, а не 81/4 витка. При намотке такой обмотки на станке наматывают восемь полных витков, а потом отсчитывают четыре промежутка между прокладками и делают переход на следующую катушку.

Максимальный радиальный размер обмотки при дробном числе витков определяется числом целых витков плюс один виток. В разобранном примере максимальный радиальный размер равен 8+1=9 толщинам провода с изоляцией.

Рис. 5.33. Двойная катушка катушечной обмотки

Возможность намотки в катушке дробного числа витков всегда позволяет легко разместить полученное по расчету число витков по катушкам, однако для упрощения намотки обмотки на станке рекомендуется рассчитывать катушки с целым числом витков. В одной обмотке рекомендуется применять не более четырех типов катушек с разным числом витков, а общее число катушек брать четным.

Иногда по условиям сборки или изоляции обмоток, например в обмотках на 220 кВ и более, непрерывная намотка катушечных обмоток неудобна. В этом случае обмотка изготавливается в виде комплекта двойных катушек (рис. 5.33).

Витки, служащие для регулирования напряжения в обмотках ВН, должны располагаться в отдельных катушках так, чтобы регулировочные ответвления выполнялись на переходах между катушками, а не от средних витков катушки. Также в отдельных катушках должны размещаться входные витки с усиленной изоляцией, которая может быть выполнена в виде усиленной изоляции провода или оплетки всей катушки снаружи лентой из кабельной бумаги или лакоткани. Усиленная изоляция между слоями (витками) в виде прокладок, как правило, не применяется.

Катушки с различным числом витков — основные, регулировочные, с усиленной изоляцией — принято для удобства обозначать различными буквами алфавита.

При размещении витков обмотки в катушки необходимо следить за тем, чтобы радиальные размеры катушек различных типов были приблизительно равными. Рекомендуется это размещение производить так, чтобы радиальные размеры наиболее широкой и наиболее узкой катушек обмотки стержня, в том числе и регулировочных, и с усиленной изоляцией, отличались не более чем на двойную толщину провода. В тех случаях, когда этого нельзя добиться простым перемещением витков, например в регулировочных катушках, допускается выравнивание радиального размера отдельных катушек путем вматывания между их витками полосок электроизоляционного картона.

Намотка непрерывной катушечной обмотки из прямоугольного провода имеет свои особенности. Для того чтобы вести обмотку, не прерывая провода и делать переход провода из катушки, в катушку то у внутреннего, то у внешнего края катушки, витки половины катушек (обычно нечетных) после намотки катушки перекладываются так, что внутренний виток оказывается наружным, а наружный внутренним. Остальные катушки (обычно четные) наматываются без перекладки [5].

В механическом отношении непрерывная катушечная обмотка является одной из самых прочных обмоток, применяемых в трансформаторах. С увеличением мощности трансформатора и ростом осевой составляющей механических сил при коротком замыкании растут также радиальный размер катушек обмотки и ее механическая стойкость. Таким образом, условия механической прочности не ставят практически никаких пределов применению обмотки этого типа, и она может применяться на очень большом диапазоне мощности трансформаторов от 160 до 1000000 кВ·А. Обмотка этого типа с успехом применяется также и в широком диапазоне напряжений от 2-3 до 500 кВ и более.

При достаточно высоких напряжениях усложняется защита обмоток от импульсных атмосферных перенапряжений, вследствие чего обмотку приходится разделять на части, наматываемые непрерывно, и на части, состоящие из отдельно наматываемых катушек. С этой целью часть обмотки может быть сделана также переплетенной, когда порядок последовательного соединения витков отличается от последовательности их размещения в катушках, например, когда в двух соседних катушках соединяются последовательно сначала все нечетные витки, а затем последовательно с ними все четные. Возможны и другие способы получения переплетенной обмотки (см. § 4.5).

Непрерывная катушечная обмотка может быть применена при всех токах нагрузки, когда при выбранной плотности тока и достаточном числе витков сечение проводника получается равным или большим, чем минимальное по сортаменту сечение прямоугольного медного провода 5,04 или алюминиевого провода 6,39 мм2. При наименьшей применяемой плотности тока в обмотках это соответствует нижнему пределу рабочего тока обмотки в медном проводе 15—18 и в алюминиевом проводе 10—13 А.

Плотность теплового потока на поверхности катушечных обмоток обычно допускают не более 1200—1400 Вт/м2.

В производстве непрерывная катушечная обмотка при равном числе витков и сечении витка несколько сложнее и дороже, чем одно- и двухслойная цилиндрическая из прямоугольного провода или многослойная цилиндрическая из круглого или прямоугольного провода. Поэтому в трансформаторах с мощностью на один стержень до 250 кВ·А предпочитают применять цилиндрические обмотки из круглого провода. В трансформаторах большей мощности, где требования механической прочности играют решающую роль, непрерывная катушечная обмотка является наиболее употребительной наряду с многослойной цилиндрической из прямоугольного провода. Благодаря высокой механической прочности, легкости распределения витков обмотки по катушкам, удобству выполнения регулировочных ответвлений, сравнительной простоте намотки, отсутствию паек между катушками и простоте установки на стержне трансформатора непрерывная катушечная обмотка находит широкое применение в масляных силовых трансформаторах в качестве обмотки ВН для трансформаторов с мощностью от 160 до 63000 кВ·А и выше при токах нагрузки от 10—15 А и выше. Обмотка этого типа находит применение также в качестве обмоток НН при токах от 10—15 до 300 А. В этом случае для уменьшения осевых механических сил в обмотках трансформаторов мощностью 1000 кВ·А и выше с ПБВ, у которых регулировочная часть обмотки ВН располагается в середине высоты стержня, рекомендуется делать в середине высоты обмотки НН разгон между катушками путем увеличения двух-трех радиальных каналов до 15-20 мм.

Непрерывная катушечная обмотка из прямоугольного провода находит также применение в качестве обмотки ВН в сухих трансформаторах с естественным воздушным охлаждением при мощностях от 250 до 1600 кВ·А при выборе размеров радиальных и осевых воздушных каналов в соответствии с требованиями табл. 9.26 и 9.2в.

5.7. ВЫБОР КОНСТРУКЦИИ ОБМОТОК

Выбор типа конструкции обмоток при расчете трансформатора должен производиться с учетом эксплуатационных и производственных требований, предъявляемых к трансформаторам в целом (см. § 5.1).

В настоящем параграфе даются общие указания по выбору конструкции обмотки по ее электрическим величинам: току нагрузки одного стержня Iс, мощности трансформатора S и номинальному напряжению Uном, а также по поперечному сечению витка обмотки П. Именно эти данные трансформатора служат основными критериями при выборе типа обмотки.

Ориентировочное сечение витка каждой обмотки, м2, может быть определено по формуле

П = Iс /Jср, (5.3)

где Iс — ток соответствующей обмотки одного стержня, А; Jср — средняя плотность тока в обмотках ВН и НН, А/м2.

Выбор средней плотности тока в обмотках не является произвольным. На том этапе расчета, когда выбирается тип обмотки, уже известны основные размеры магнитной системы, ЭДС одного витка и числа витков в каждой из обмоток, а также ориентировочные основные размеры обмотки (внутренний диаметр и высота). В зависимости от выбора значения Jср будут изменяться объем и масса обмоток, а следовательно, и основные потери в них Росн- Обычно при расчете трансформатора потери короткого замыкания Рк бывают заданы и выбор средней плотности тока должен быть связан с заданной величиной Рк.

Для определения средней плотности тока в обмотках, А/м2, обеспечивающей получение заданных потерь короткого замыкания, можно воспользоваться формулами, выведенными в § 7.1:

для медных обмоток

Jср = 0,746kд104; (5.4)

для алюминиевых обмоток

Jcp = 0,463 kд104. (5.5)

Плотность тока в обмотках из транспонированного провода определяется по (5,4), в обмотках из алюминиевой ленты — по (5.5),

При расчете трехобмоточного трансформатора в (5.4) и ,(5.5) следует подставлять потери короткого замыкания Рк для двух внутренних обмоток при 100 %-ной мощности, полную (100 %) мощность трансформатора S и диаметр d12 для двух внутренних обмоток, определяемый по методике, принятой для двухобмоточных трансформаторов. Для обмоток, рассчитываемых на 67 % полной мощности трансформатора, значение плотности тока, найденное по (5.4) и (5.5), следует умножить на 0,67.

Для автотрансформаторов под S следует понимать типовую (расчетную) мощность автотрансформатора.

Формулы (5.4) и (5.5) связывают искомую среднюю плотность тока в обмотках ВН и НН с заданными величинами: полной мощностью трансформатора S, кВ·А, потерями короткого замыкания Рк, Вт, и величинами, определяемыми до расчета обмоток: ЭДС одного витка uв, В, и средним диаметром канала между обмотками d12, м. Коэффициент kд учитывает наличие добавочных потерь в обмотках, потери в отводах, стенках бака и т. д. Значения kд могут быть взяты из табл. 3.6. Значение плотности тока, полученное из (5.4) или (5.5), следует сверить с данными табл. 5.7, где приведены ориентировочные значения практически применяемых плотностей токов. Сверка рассчитанного значения Jср с таблицей имеет целью избежать грубых ошибок в расчете Jср. Точного совпадения Jср с цифрами таблицы не требуется. По этой же таблице можно выбрать среднюю плотность тока в обмотках в том случае, когда потери короткого замыкания не заданы.

Найденное по (5.4) или (5.5) значение плотности тока является ориентировочным средним значением для обмоток ВН и НН. Действительная средняя плотность тока в обмотках должна быть выдержана близкой к этой. Плотности тока в каждой из обмоток масляного трансформатора с медными или алюминиевыми обмотками могут отличаться от среднего значения, желательно, однако, чтобы не более чем на 10 %. Следует помнить, что отклонение действительной средней плотности тока от найденной по (5.4) и (5.5) в сторону возрастания увеличивает потери короткого замыкания Рк и в сторону уменьшения—снижает.

В сухих трансформаторах вследствие существенного различия условий охлаждения для внутренних и наружных обмоток плотность тока во внутренней обмотке НН обычно снижают на 20-30 % по сравнению с плотностью в наружной обмотке ВН. Поэтому в таких трансформаторах отклонение действительной плотности тока в обмотках от найденного среднего значения может достигать ±(15—20) %.

Таблица 5.7. Средняя плотность тока в обмотках J, МА/м2, для современных трансформаторов с потерями короткого замыкания по ГОСТ

а) Масляные трансформаторы
Мощность трансформатора, кВ·А 25 - 40 65 - 630 1000 - 6300 10000 - 16000 25000 - 80000
Медь          
Алюминий          
б) Сухие трансформаторы
Мощность трансформатора, кВ·А 10 - 160; 0,5 кВ 160 - 1600; 10кВ
Обмотка Внутренняя НН Наружная НН Внутренняя НН Наружная НН
Медь 2,0 - 1,4 2,2 - 2,8 2,0 - 1,2 2,0 - 2,8
Алюминий 1,3 -0,9 1,3 - 1,8 1,4 - 0,8 1,4 - 2,0

Примечания: 1. Для трансформаторов с потерями короткого замыкания выше указанных ГОСТ возможен выбор плотности тока в масляных трансформаторах до 4,5 МА/м2 в медных и до 2,7 МА/м2 в алюминиевых обмотках; в сухих трансформаторах — соответственно до 3 и 2 МА/м2.

3. Плотность тока в обмотках из транспонированного провода выбирается так же, как и для медного или алюминиевого провода.

2. Плотность тока в обмотках из алюминиевой ленты выбирается, как для алюминиевого провода.

По этой же причине среднюю плотность тока в обмотках этих трансформаторов рекомендуется принимать 0,93—0,97 значения, найденного по (5.4) или (5.5). После определения средней плотности тока Jср и сечения витка П для каждой из обмоток можно произвести выбор типа конструкции обмотки, пользуясь указаниями, сделанными в предыдущих параграфах и сведенными вкратце в табл. 5.8. При выборе конструкции обмоток ВН следует учитывать также и возможность получения наиболее удобной схемы регулирования напряжения обмотки ВН в соответствии с указаниями, данными в § 6.2.

Таблица 5.8. Основные свойства и нормальные пределы применения различных типов обмоток масляных трансформаторов

Тип обмотки Применение на стороне Основные достоинства Основные недостатки Материал обмоток Пределы применения, включительно Число параллель-ных проводов Схема регулиро-вания напряже-ния
главное возможное   по мощности трансформа-тора S, кВ·А по току на стержень I, А по напряжению U, В по сечению витка П, мм2
Цилиндрическая одно- и двухслойная из прямоугольного провода НН ВН Простая технология изготовления, хорошее охлаждение Малая механическая прочность Медь

 

До 630 От 15-18 до 800 До 6 От 5,04 до 250 От 1 до 4-8

 

-
Алюминий До 630 От 10-13 до 600-650 До 6 От 6,39 до 300
Цилиндрическая многослойная из прямоугольного провода ВН НН Хорошее заполнение окна магнитной системы, простая технология

изготовления

Уменьшение охлаждаемой поверхности по сравнению с обмотками, имеющими радиальные каналы Медь От 630 до 80000 От 15-18 до 1000-1200 10 и 35 От 5,04 до 400 От 1 до 4-8 Рис 6.6, а,б
Алюминий До 16000-25000 От 10-13 до 1000-1200 10 и 35 От 6,39 до 500
Цилиндрическая многослойная из алюминиевой ленты НН - Простая технология изготовления, хорошее охлаждение, Хорошее заполнение окна магнитной системы Малая механическая прочность в радиальном направлении Алюминий От 160 до 1000 От 100 до 1500 До 10 От 100 до 1000 От 1 до 1 -
Цилиндрическая многослойная из круглого провода ВН НН Простая технология изготовления Ухудшение теплоотдачи и уменьшение механической прочности с ростом мощности Медь До 630 От 0,3-0,5 до 80-100 До 35 От 1,094 до 42,44 1 2 Рис.6.6, а,б
Алюминий До 630 От 2-3 до 125-135 До 35 От 1,37 до 50,24 1 1
Винтовая одно-, двух- и многоходовая из прямоугольного провода НН - Высокая механическая прочность, надежная изоляция, хорошее охлаждение Более высокая стоимость по сравнению с цилиндричес-кой обмоткой Медь От 160 и выше От 300 и выше До 35 От 75-100 и выше 4 12-16 и бо-лее -
Алюминий От 100 и выше От 150-200 и выше До 35 От 75-100 и выше
Непрерывная катушечная из прямоугольного провода ВН НН Высокая электрическая и механическая прочность, хорошее охлаждение Необходимость перекладки половины катушек при намотке Медь От 160 и выше От 15-18 и выше От 3 до 110-220 От 5,04 и выше 1 3-5 Рис. 6.6, в,г
Алюминий От 100 и выше От 10-13 и выше От 3 до 110-220 От 6,39 и выше

В тех случаях, когда возможно применить два различных типа обмотки, если нет других указаний, следует, как правило, отдавать предпочтение типу, более простому и дешевому в производстве. Если к трансформатору предъявляются какие-либо специальные требования, например повышенной механической или электрической прочности или другие, следует выбирать тип обмотки, наиболее отвечающий этим требованиям.

В сухих трансформаторах могут быть применены те же основные типы обмоток, которые применяются в масляных трансформаторах при условии уменьшения плотности тока согласно табл. 5.7 и увеличения размеров охлаждающих каналов согласно табл. 9.2. При выборе типа обмоток для сухого трансформатора можно пользоваться табл. 5.8 с сохранением всех пределов применения обмоток, кроме предела применения по току на один стержень и напряжению. Цифры таблицы для тока должны быть снижены на 30—35 %, а номинальное напряжение обмоток не должно быть более 15 кВ.

При расчете обмоток существенное значение имеет правильный выбор размеров провода. В обмотках из провода круглого сечения обычно выбирается провод, ближайший по площади поперечного сечения к сечению П, определяемому по выбранной плотности тока Jср, или в редких случаях подбираются два провода с соответствующим общим суммарным сечением.

При расчете винтовых, катушечных и в большинстве случаев двух- и многослойных цилиндрических обмоток из провода прямоугольного сечения желательно применять наиболее крупные сечения провода, что упрощает намотку обмотки на станке и позволяет получить наиболее компактное ее размещение на магнитной системе. Однако применение наиболее крупных размеров провода ограничивается условиями охлаждения обмотки и допустимыми добавочными потерями от вихревых токов, вызываемых полем рассеяния.

Выбор размеров поперечного сечения провода связан с плотностью теплового потока на охлаждаемой поверхности обмотки q. Значение q в целях недопущения чрезмерного нагрева обмоток в трансформаторах с естественным масляным охлаждением ограничивается q≤ 1200-1400 Вт/м2 и во всяком случае не более 1500 Вт/м2. В трансформаторах с искусственной циркуляцией масла допускают q≤2000-2200 Вт/м2. Превышение указанных значений q приводит к существенному увеличению массы системы охлаждения трансформатора. Высокие значения q определяют также значительный нагрев масла в каналах обмоток, что ускоряет старение масла. Снижение допустимых значений q для медных обмоток примерно до 1000 Вт/м2 позволит существенно замедлить старение масла и удлинить сроки его замены. Для алюминиевых обмоток значения q обычно естественно получаются на 20—25 % ниже, чем для медных.

В обмотках сухих трансформаторов могут быть допущены различные значения q в зависимости от класса нагревостойкости изоляции и размеров охлаждающих каналов. Выбор размеров вертикальных и горизонтальных каналов и соответствующих значений q, обеспечивающих получение допустимых превышений температуры, может быть сделан по табл. 9.26 и 9.2в.

При изоляции класса нагревостойкости А для внутренних обмоток при вертикальных каналах шириной 1 и горизонтальных 0,8 см можно допустить q≤280 Вт/м2. Для наружных обмоток, имеющих только одну внешнюю поверхность (обмотка, намотанная на цилиндре без канала), можно допустить q≤600 Вт/м2.

В обмотках масляного трансформатора из прямоугольного провода, каждый провод которых с двух сторон омывается маслом (в одно- и двухслойных цилиндрических с намоткой на ребро, в винтовых и непрерывных катушечных с намоткой плашмя) значение большого из двух размеров поперечного сечения провода b, м (см. рис. 7.3, в) может быть выбрано по формулам:

для медного провода

b ≤ qkз/(1,07J2·10-8); (5.6)

для алюминиевого провода

b ≤ qkз/(1,72J2·10-8). (5.7)

Для винтовых и катушечных обмоток следует принять kз=1; Для цилиндрических kз = 0,8. Найденный размер провода следует рассматривать как предельно допустимый для заданного значения q. При выборе провода по сортаменту он может быть принят и меньшим. Выбор предельного значения b можно сделать также и по графикам рис. 5.34.

Если размер b получается близким к предельному размеру по сортаменту табл. 5.2 или выходит за эти пределы, то в катушечной обмотке можно выбрать действительный размер провода, равный половине или меньше половины найденного по формуле или графикам рис. 5.34, сдвоить катушки и сделать радиальные масляные каналы через две катушки.

Рис. 5.34. Графики для ориентировочного определения размера провода b по заданным значениям q и J в катушечных, винтовых и цилиндрических обмотках из прямоугольного провода:

a—медный провод; б — алюминиевый провод. Для цилиндрических обмоток размер b, полученный по графику, умножить на 0,8

В одноходовой винтовой обмотке в этом случае можно сделать радиальные масляные каналы не через один виток, а через два; в двухходовой винтовой обмотке можно отказаться от радиальных каналов между ходами. В алюминиевых обмотках трансформаторов мощностью до 6300 кВ·А возможность сдвоить витки в винтовой обмотке или катушки в непрерывной катушечной обмотке представляется достаточно часто.

Для обмоток сухих трансформаторов предельный размер b может быть найден также по (5.6) и (5.7) с учетом допустимого значения q и размеров осевых каналов по табл. 9.2б и 9.2в.

В многослойных цилиндрических обмотках из прямоугольного провода, наматываемого плашмя, маслом омываются поверхности, прилегающие к масляным охлаждающим каналам, и внешняя поверхность наружной обмотки стержня. В этом случае на охлаждаемые поверхности выходит тепло, возникающее в нескольких слоях проводов, находящихся между двумя каналами, и под искомым значением b, определяемым по (5.6) и (5.7) при kз = 0,8, следует понимать сумму размеров металла проводов в радиальном направлении обмотки между двумя осевыми каналами. Если данная часть (катушка) обмотки намотана непосредственно на изоляционном цилиндре без масляного канала и имеет только одну цилиндрическую поверхность, омываемую маслом, значения b, полученные из (5.6) или (5.7) или по графикам рис. 5.34, следует умножить на 0,5.

Если, например, в многослойной обмотке из прямоугольного алюминиевого провода при J = 1,6·106 А/м2, при допустимом значении q=1400 Вт/м2 по (5.7)

b ==0,0254 м (25,4 мм)

то это значит, что в катушке между двумя осевыми каналами можно уложить из сортамента табл. 5.2 пять слоев провода с размером в радиальном направлении по 5 мм или шесть слоев с размером по 4,25 мм и т. д. при значении q≈1400 Вт/м2. Так же можно определить предельный радиальный размер провода в винтовой обмотке, не имеющей радиальных каналов.

В сухих трансформаторах с естественным воздушным охлаждением многослойные цилиндрические обмотки из прямоугольного провода применяются редко. При необходимости в этом случае можно также воспользоваться формулами (5.6) и (5.7) при kз = 0,8 или графиками рис. 5.34.

В многослойной цилиндрической обмотке из прямоугольного провода возникают добавочные потери, вызываемые вихревыми токами. При осевом направлении потока магнитного поля рассеяния обмоток эти потери пропорциональны четвертой степени радиального размера провода обмотки и квадрату числа слоев обмотки в радиальном направлении. В обмотках этого типа обычно стараются выбрать число слоев обмотки и радиальный размер провода так, чтобы добавочные потери не превысили 5 % основных потерь обмотки. Иногда, сравнительно редко, допускают добавочные потери до 10 %.

Для ориентировочного выбора максимально допустимого значения радиального размера прямоугольного провода

Таблица 5.9. Ориентировочные предельные радиальные размеры провода а, мм, цилиндрических обмоток из провода прямоугольного сечения при добавочных потерях не превышающих 5, 10, 15 и 20 %

Число слоев обмотки Медные обмотки Алюминиевые обмотки
Добавочные потери до Добавочные потери до
5% 10% 15% 20% 5% 10% 15% 20%
1 9,0 10,6 11,8 13,2 11,8 13,2 15,0 16,0
2 6,3 7,5 8,5 9,0 8,0 10,0 10,6 11,8
3 5,3 6,3 6,7 7,5 6,7 8,0 8,5 9,5
4 4,5 5,3 6,0 6,3 5,6 6,7 7,5 8,0
5 4,0 4,75 5,3 5,6 5,0 6,0 6,7 7,5
6 3,75 4,5 4,75 5,3 4,75 5,6 6,0 6,7
7 3,35 4,0 4,5 4,75 4,5 5,0 5,6 6,0
8 3,35 3,75 4,25 4,5 4,0 4,75 5,6 5,6
9 3,15 3,55 4,0 4,25 3,75 4,5 5,0 5,6
10 3,0 3,55 4,0 4,25 3,75 4,5 5,0 5,6
11 2,8 3,15 3,75 3,75 3,55 4,0 4,5 4,75
12 2,65 3,15 3,35 3,75 3,35 3,75 4,5 4,75
13 2,5 3,0 3,35 3,55 3,0 3,75 4,0 4,5
14 2,36 3,0 3,15 3,35 3,0 3,55 3,75 4,0
15 2,36 2,8 3,0 3,35 3,0 3,55 3,75 4,0
16 2,24 2,65 3,0 3,15 2,8 3,35 3,75 4,0
 

в цилиндрических обмотках с числом слоев от 1 до 16 можно воспользоваться табл. 5.9, в которой приведены предельные значения радиального размера провода, дающие добавочные потери до 5, 10, 15 и 20 % основных потерь в медных и алюминиевых обмотках. С ростом числа слоев в обмотке существенно возрастают добавочные потери и уменьшается максимально допустимый радиальный размер провода. Возможность намотки провода на ребро данные этой таблицы ограничивают тремя-четырьмя слоями. По этой таблице можно также определить предельный радиальный размер провода в винтовой обмотке, не имеющей радиальных каналов.

Следует иметь в виду, что предельное значение добавочных потерь, указанное в табл. 5.9, является средним для всей обмотки. В крайних витках, прилегающих к каналу между обмотками, добавочные потери будут в 3 раза больше.

В винтовых и катушечных обмотках с радиальными каналами при прочих равных условиях (одинаковое число слоев, одинаковые размеры провода, одинаковое число витков или одинаковая высота обмотки) индукция поля рассеяния оказывается существенно ниже, чем в обмотках, не имеющих этих каналов, и добавочные потери составляют от 0,4 до 0,6 добавочных потерь в обмотках без каналов. При этом предельный радиальный размер провода в обмотках с радиальными каналами может быть принят на 25—15 % выше полученного из табл. 5.9.

Изменение добавочных потерь в обмотке любого типа с заданным радиальным размером при изменении радиального размера провода видно из следующего примера. В катушке (витке) из пяти проводов, расположенных в радиальном направлении, с радиальным размером каждого провода 10 мм заменили пять проводов десятью проводами с радиальным размером по 5 мм.

Отношение добавочных потерь стало

D10/D5 = 0,54·102/(1,04-52) = 6,25/25 = 1/4.